Skip to main content

Python bindings for the nod library.

Project description

py-nod

Python 3.6 bindings for the NOD, a library for traversing, dumping, and authoring GameCube and Wii optical disc images.

Usage

Unpacking

import nod

def progress_callback(path, progress):
    if args.verbose:
        print("Extraction {:.0%} Complete; Current node: {}".format(progress, path))

context = nod.ExtractionContext()
context.set_progress_callback(progress_callback)

try:
    disc, is_wii = nod.open_disc_from_image("game.iso")
    data_partition = disc.get_data_partition()
    if not data_partition:
        raise RuntimeError("Could not find a data partition in the disc.")
    data_partition.extract_to_directory("dir_out", context)
except RuntimeError as e:
    raise Exception("Could not extract disc at 'game.iso' to 'dir_out': {}".format(e))

Packing

import nod

if nod.DiscBuilderGCN.calculate_total_size_required("dir_out") is None:
    raise Exception("Image built with given directory would pass the maximum size.")

def fprogress_callback(progress: float, name: str, bytes: int):
    print("\r" + " " * 100, end="")
    print("\r{:.0%} {} {} B".format(progress, name, bytes), flush=True)

disc_builder = nod.DiscBuilderGCN("game.iso", fprogress_callback)
try:
    disc_builder.build_from_directory("dir_out")    
except RuntimeError as e:
    raise Exception("Failure building the image: {}".format(e))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nod-1.9.0.tar.gz (939.0 kB view details)

Uploaded Source

Built Distributions

nod-1.9.0-cp311-cp311-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

nod-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nod-1.9.0-cp311-cp311-macosx_10_9_universal2.whl (537.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

nod-1.9.0-cp310-cp310-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

nod-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nod-1.9.0-cp310-cp310-macosx_11_0_x86_64.whl (486.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

nod-1.9.0-cp39-cp39-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

nod-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nod-1.9.0-cp39-cp39-macosx_11_0_x86_64.whl (488.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

nod-1.9.0-cp38-cp38-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

nod-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nod-1.9.0-cp38-cp38-macosx_10_15_x86_64.whl (487.7 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

nod-1.9.0-cp37-cp37m-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

nod-1.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nod-1.9.0-cp37-cp37m-macosx_10_15_x86_64.whl (486.7 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file nod-1.9.0.tar.gz.

File metadata

  • Download URL: nod-1.9.0.tar.gz
  • Upload date:
  • Size: 939.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for nod-1.9.0.tar.gz
Algorithm Hash digest
SHA256 6743d9dc4900de57a188728f919e2358d961205979aac83d0dce399d9382893d
MD5 663de51a198c6211cecf313059b4663a
BLAKE2b-256 2047ec5074ac42c9d743d8a611cb586d1e5bda7e6d8859b50d4c788f9eee2c62

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for nod-1.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ae01d9b94a15508cf18e3b34adc2a0891df8741047a4a4132d729bc55efefd53
MD5 fdb473256782fdf86832967c5b065d73
BLAKE2b-256 480b266ae93ea0fbf5ff98c06a3f6ebdb790bf40a330ff12165748155633ec97

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 823c0ac0aded8394ac497d61cf4db3dd3a1d9825ff7acc2024f0c656ce5b1f63
MD5 28ee96fc755939644061a65b8e6d41a6
BLAKE2b-256 2f67d42b86b5fe8ffc5755925b55a6fa8bb29cbf7512adc9a7b074500ff5973f

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for nod-1.9.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9abdc5364633d03335cf607350ff03c8246cf8f471906a39ac0e923758326f66
MD5 d897b6bdc9a04d25675f479c2541aa99
BLAKE2b-256 3eedd6c8a258abafd7bc6c2081e40eaa8bb926360e560ca8498aaaec0cc46dd3

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for nod-1.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a81d54c2d2b2eea79d115477315f926d4f1225dc3600daab786f091bcbcf95a0
MD5 b63cab187c38120f8a9b649567d34bd1
BLAKE2b-256 9fb7560d61d9ce60e46c2fda5d199c4069fa00498d26a584ba89b3d93b2db473

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e5c09a35368741487fef172b6b92e3911e697eeef3d897c334077f0efed3b25
MD5 413df7c184337ea5b09237d528449b40
BLAKE2b-256 ce9006d7f501853b66949582e54201be62d4344a59fd471a9f2ecd7d4647f0f8

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.0-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 773b96ef695181c8183cd20e1c8b7b8a77ba69531d2b57f7f8d866d83542d7c9
MD5 aaab575d50f2f627e8df71e746c55cdf
BLAKE2b-256 3444eaebf4e1426fa80ebc34b1410f69d74777d18e387b71231f883c2a31b76c

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for nod-1.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2d1f8247b8a4b48bcf642ca5e2c643ce9c83d4fb2710d709ea68e25f3a69aa92
MD5 cb5f27af677d57387cd9c2d0746db124
BLAKE2b-256 6db8cb6994c203fadadf11240c75fd4c656808d0fb0b2c46396611f1ff06874a

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 600f5629cb1e664d86f295e4cc2e18c4529746f7ccc1f92fc1ef9670198c47ec
MD5 d7a97b64b3daea2d04cd21511621e4e5
BLAKE2b-256 474ea73d90bb04a4bd0454cbd26ee858ec4f7ba7908f1eb3b8e9878b0c73d78f

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.0-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 62ef1208d6a5553a09f09557e420098260ef41dbf98926ebcee0565406f076e3
MD5 ad3042f66cd0cb84f5ecd2cfbfae6a8c
BLAKE2b-256 86682d3cb6358e9163ee56cd1a998618e655d1aff4622e86c820fe8b8ed12e42

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for nod-1.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f31c7a9d44b227e18f40d3ef40e45d19c03d11e4197efb2e9d6d39dd4923ed6a
MD5 2c905ff40bf7d322781c2493a15002d6
BLAKE2b-256 1115488a333a9204504cba4a97a062003c2eec13c7be7291ee9de7066d77f3b7

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3b32b07663fe7b20c6d48894afd8416441367a704382557ab87c1657aacd07f
MD5 9d8f20f3b1cd3d643e5e235b8a8826df
BLAKE2b-256 c4e863eaa6da7d5279e8b14ef7af90fb70ca36e84ecb5efc85376809e4445ed3

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b47da40afa88f1ee14abd31ce241a09fdcd40f798f2b30e001d040da4326034d
MD5 25e85c7fd6bae62499c95a6ed0762dd3
BLAKE2b-256 928010d504d222a9ced37d2041dd0b79d5cf1766e27a8a0299c6caae44623629

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for nod-1.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 63ce46bd810a9a4099511972266a2a72e0d532ec0c8c3b333f0a88db74160e56
MD5 bb3d501e6864891dfbbcb2631ff8b461
BLAKE2b-256 12947de248ab87086a03f8044336c411c303d71c7fed600c7d53eb70006215cb

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7891956b425126987294dbae71e1194a70cb8aedc0cabeda94cf3e3dda218127
MD5 15f1f046d009637778323fcdb2d97c9b
BLAKE2b-256 4b4f3be36629152caddee48c6c517bc667b243402a427ccc4c070cc230f75b60

See more details on using hashes here.

File details

Details for the file nod-1.9.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d1a6eba0ea685f1be7f0e47c1aea641e8db6c0549c85cc6a88a71fa637a59e4f
MD5 a6d22ced5a333504af0328d0168f2a3a
BLAKE2b-256 2a1d0f1153ee2e3cd0ddfbeec43eb0c68ea6748581f27a3a8ddf7dffa9e31e45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page