Skip to main content

Python bindings for the nod library.

Project description

py-nod

Python 3.8 bindings for the NOD, a library for traversing, dumping, and authoring GameCube and Wii optical disc images.

Usage

Unpacking

import nod

def progress_callback(path, progress):
    if args.verbose:
        print("Extraction {:.0%} Complete; Current node: {}".format(progress, path))

context = nod.ExtractionContext()
context.set_progress_callback(progress_callback)

try:
    disc, is_wii = nod.open_disc_from_image("game.iso")
    data_partition = disc.get_data_partition()
    if not data_partition:
        raise RuntimeError("Could not find a data partition in the disc.")
    data_partition.extract_to_directory("dir_out", context)
except RuntimeError as e:
    raise Exception("Could not extract disc at 'game.iso' to 'dir_out': {}".format(e))

Packing

import nod

if nod.DiscBuilderGCN.calculate_total_size_required("dir_out") is None:
    raise Exception("Image built with given directory would pass the maximum size.")

def fprogress_callback(progress: float, name: str, bytes: int):
    print("\r" + " " * 100, end="")
    print("\r{:.0%} {} {} B".format(progress, name, bytes), flush=True)

disc_builder = nod.DiscBuilderGCN("game.iso", fprogress_callback)
try:
    disc_builder.build_from_directory("dir_out")    
except RuntimeError as e:
    raise Exception("Failure building the image: {}".format(e))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nod-1.9.1.tar.gz (1.0 MB view details)

Uploaded Source

Built Distributions

nod-1.9.1-cp312-cp312-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

nod-1.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nod-1.9.1-cp312-cp312-macosx_10_9_universal2.whl (568.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

nod-1.9.1-cp311-cp311-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

nod-1.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nod-1.9.1-cp311-cp311-macosx_10_9_universal2.whl (568.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

nod-1.9.1-cp310-cp310-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

nod-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nod-1.9.1-cp310-cp310-macosx_11_0_x86_64.whl (500.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

nod-1.9.1-cp39-cp39-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

nod-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nod-1.9.1-cp39-cp39-macosx_11_0_x86_64.whl (500.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

nod-1.9.1-cp38-cp38-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

nod-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nod-1.9.1-cp38-cp38-macosx_11_0_x86_64.whl (501.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

File details

Details for the file nod-1.9.1.tar.gz.

File metadata

  • Download URL: nod-1.9.1.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for nod-1.9.1.tar.gz
Algorithm Hash digest
SHA256 cb1915d8cff679b0f92ff6c47df6d2dd377eccad6364226e6461fa1b9e52b257
MD5 a6b5e3d7e84aa81a950a8b5dc8c34e1e
BLAKE2b-256 0de72857876bb793eac913aeeb354db3575d8c63fea1215a86f4bed34fe86100

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for nod-1.9.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7c3a885384301fe408ab9d602da2ca8161ea566ebc8ca5077b6ae20acda3caea
MD5 a565ede4f3cfb93e6e0b38197b68714e
BLAKE2b-256 67204ca799e551a16b7046906e4429c22b19d21398fcee9a4577d761da42a1d4

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 040afe4adde981cad140475ed4e376185b59030325c6af6d04a2c651b65bff30
MD5 3f9a5db9d9cd4fa30a9d5642415ff1ca
BLAKE2b-256 77526539b3c557a49f47d748346375d4cc682e11aeab0b764a0dab0c3f63d6d3

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for nod-1.9.1-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8399ec71505a41610c4063748b823c93447c58d0cb163aef993e6630036fc2b7
MD5 0aaf9faebc74362203883d6b1877b2d4
BLAKE2b-256 e46458c53887d46d316e560ff28dbff8d5b0a23788e1fd9ec357f80596301ad9

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for nod-1.9.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f211a0b4f95f300d3e68cb5c38a82d61df913d075583233da6c1597e259d69d0
MD5 723377af8467ac3f47f7f17577aac096
BLAKE2b-256 3e14725316d946e58ab72ffe2f87b1684cb01b6a6661746e38fac5814b957f36

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d2002a1a8aa9bdf4574899e365b1f816fae0069cca78547fc7ed52d36c3d92c
MD5 5b7eb1d4d3565ccd86db69f1b8163aa8
BLAKE2b-256 d2b64429863c5e8670a922ca84585b73eae5d816442644a5545bfe27527fea57

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for nod-1.9.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f08e91d7fb0e3950d23c6a72cd3a4fb8f47f9d6f2b2cdafed101f81221e8054a
MD5 9a0f6687025536b4dc10f429378a14d6
BLAKE2b-256 9897a0e1084c0dede968f73987718542cfbd4bfa4aa37b628ec50fde8771ab39

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for nod-1.9.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6533046fcdc0be09717e728c97567e49eb1463907568d247a2ab8e93d109816c
MD5 85b53b82bb5c13108ef92a8eeefb8d18
BLAKE2b-256 79799ac7d2abfd462e78a03969f45d4a113b4b7e08e5254a21ddec75b69476e1

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f638d024e4a972c242d655ea5b3a2a6f5d89e859961e3f6edca4b774c67a2456
MD5 e9cc1a293c34fcf5af59c90da7970a5c
BLAKE2b-256 53ba7bbdb9de8d880b3f90294b9d209a82218b3a46e9b4e193f952d0c101d1a0

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.1-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 bbd3b812b93473814513e55f770408b7031bf68dc3063e057dc219c4ae86fdc5
MD5 e72f9c2776132521ce0cc26f4d96e21c
BLAKE2b-256 0ab8934010d8a2a2d35d009ed6b9795c388ac69d7e61e1c3dd26213382b75621

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for nod-1.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e6466c47f82da02f5e132e19bfe3230d6b651480580eb5f6878de1fa448b21b2
MD5 13fd085534cb1a6a9c2ee46cd7fa53fb
BLAKE2b-256 ec5ba786d4dffed3adf30737e4b08b593132d9b5d6e1e3b504bce0a200ea1785

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be85b88d1fde9f93c585dd99e8212cac9811ab1d7ebcc83564a96a823f1bf62a
MD5 620c9e804aca13949ab96af77521ca31
BLAKE2b-256 5147958b49f02aa68927b2929e8d0824d910dbd9ed7e43fc147a950111ecc752

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.1-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 5b32e1b028cd897423b874b05101325672e82f3b41600698c929c49ecdfa8c2d
MD5 602d192857305c66c25710403edcd853
BLAKE2b-256 40c086ca6f910de9107562ac328bea8da94adf448119f83cf8b05c724064daca

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nod-1.9.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for nod-1.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a84415107fec6c96af3104d5bd8c43cacd7c49aca333139dd6c789d368541925
MD5 3956c9fdb02c7d6df6e7f0be25f598ec
BLAKE2b-256 80eff4ac0605c796dd11b47509efe19f86de0be70faeef4812ba00b1cea964e7

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6a74cba9c8839a92d115c6f69770889ec98480642ce1b2d75160260c4d21d22
MD5 f6ec44f226e32ee3e43d7cb13c080c14
BLAKE2b-256 b29d8f17bea51e4626612d0472a2dc20cc2d1d98d257c7521457c31adfb957a8

See more details on using hashes here.

File details

Details for the file nod-1.9.1-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.9.1-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 47c03705700d0ef47c97b5b01683f0f7b03f4aacb63382fc10c62060a326d5bd
MD5 deb7c279a3b13403e9755931e67a50af
BLAKE2b-256 54a6a9c48f41d8e2a984a33f774314c001aeb3dd68a4d97a475b43c100ea6d42

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page