Skip to main content

A tree-structured hybrid model for classification of binary data.

Project description

NoiseCut

GitHub GitHub Workflow Status (with event) Read the Docs

noisecut is an easy-to-use Python package for the implementation of tree-structured functional networks (FNs) as a model class for the classification of binary data with prior knowledge on input features. FNs can be viewed as modular neural networks, where the structure of the links between the modules and the information flow from input variables to the output variable is pre-determined. Here, each module of the FN is simply represented as a black-box module. The identification of an FN, i.e., learning the input-output function of the FN, is then decomposed to the identification of the individual interior black-box modules.

noisecut can be used for any tree-structured FNs which has the below criteria. It should have

  1. two hidden layer,
  2. arbitrary number of black-box modules in the first hidden layer,
  3. only one black-box module in the second hidden layer,
  4. each input feature goes only to one black-box module (tree structure).

Installation

Dependencies

  • Python (>=3.9)
  • numpy
  • pandas
  • scipy
  • gurobipy

User installation

Bofore you can use NoiseCut package, you need to install noisecut using pip:

$ pip install noisecut

Simple demo

Code snippet shown below summarizes a complete workflow, starting with the generation of synthetic data, proceeding to the division of data into training and testing sets, and concluding with model fitting and result evaluation.

from noisecut.model.noisecut_coder import Metric
from noisecut.model.noisecut_model import NoiseCut
from noisecut.tree_structured.data_manipulator import DataManipulator
from noisecut.tree_structured.sample_generator import SampleGenerator

# Synthetic data generation
gen_dataset = SampleGenerator(
    [4, 4, 4], allowance_rand=True
)  # [4,4,4] determines the number of inputs to each black box of the FN model
X, y = gen_dataset.get_complete_data_set()

# Add noise in data labeling. Train and test set split.
x_noisy, y_noisy = DataManipulator().get_noisy_data(X, y, percentage_noise=10)
x_train, y_train, x_test, y_test = DataManipulator().split_data(
    x_noisy, y_noisy, percentage_training_data=50
)

# Training
mdl = NoiseCut(
    n_input_each_box=[4, 4, 4]
)  # 'n_input_each_box' should fit to the generated data
mdl.fit(x_train, y_train)

# Evaluation
y_pred = mdl.predict(x_test)
accuracy, recall, precision, F1 = Metric.set_confusion_matrix(y_test, y_pred)

Usage

Various use cases of the useful functions of noisecut package are provided as jupyter notebooks:

Examples show how to use the package to fit the model and investigate the predicted results in score, probability or simple binary output format.

License

noisecut was created by Hedieh Mirzaieazar and Moein E. Samadi. It is licensed under the terms of the GPLv3 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

noisecut-0.1.0.tar.gz (39.9 kB view details)

Uploaded Source

Built Distribution

noisecut-0.1.0-py3-none-any.whl (44.6 kB view details)

Uploaded Python 3

File details

Details for the file noisecut-0.1.0.tar.gz.

File metadata

  • Download URL: noisecut-0.1.0.tar.gz
  • Upload date:
  • Size: 39.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for noisecut-0.1.0.tar.gz
Algorithm Hash digest
SHA256 39180391723118a2e8d2d8069d347b9bcc9db8e5a648641d22e10c488803fab7
MD5 e4f8d4d426d99d17def1f9eecbe24a24
BLAKE2b-256 c0981a688757050549bb5a6208dbd8e475fae8d08c41e80f262d9126cb2932d7

See more details on using hashes here.

File details

Details for the file noisecut-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: noisecut-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 44.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for noisecut-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bd1ec572a8c64bfeba0294af7bd950384f45a581eb2ad7df6a2eca15b046550f
MD5 7d4b93e358abaee5db9638f2573796b3
BLAKE2b-256 d9f54dcb63354b5647c287af3abd8850d7832ad81d87ceaaaa0e315dbf2af90b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page