Noise reduction using Spectral Gating in python
Project description
Noise reduction in python using spectral gating
- This algorithm is based (but not completely reproducing) on the one outlined by Audacity for the noise reduction effect (Link to C++ code)
- The algorithm requires two inputs:
- A noise audio clip comtaining prototypical noise of the audio clip
- A signal audio clip containing the signal and the noise intended to be removed
Steps of algorithm
- An FFT is calculated over the noise audio clip
- Statistics are calculated over FFT of the the noise (in frequency)
- A threshold is calculated based upon the statistics of the noise (and the desired sensitivity of the algorithm)
- An FFT is calculated over the signal
- A mask is determined by comparing the signal FFT to the threshold
- The mask is smoothed with a filter over frequency and time
- The mask is appled to the FFT of the signal, and is inverted
Installation
pip install noisereduce
noisereduce optionally uses Tensorflow as a backend to speed up FFT and gaussian convolution. It is not listed in the requirements.txt so because (1) it is optional and (2) tensorflow-gpu and tensorflow (cpu) are both compatible with this package. The package requires Tensorflow 2+ for all tensorflow operations.
Usage
(see notebooks)
import noisereduce as nr
# load data
rate, data = wavfile.read("mywav.wav")
# select section of data that is noise
noisy_part = data[10000:15000]
# perform noise reduction
reduced_noise = nr.reduce_noise(audio_clip=data, noise_clip=noisy_part, verbose=True)
Arguments to noise_reduce
n_grad_freq (int): how many frequency channels to smooth over with the mask.
n_grad_time (int): how many time channels to smooth over with the mask.
n_fft (int): number audio of frames between STFT columns.
win_length (int): Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`..
hop_length (int):number audio of frames between STFT columns.
n_std_thresh (int): how many standard deviations louder than the mean dB of the noise (at each frequency level) to be considered signal
prop_decrease (float): To what extent should you decrease noise (1 = all, 0 = none)
pad_clipping (bool): Pad the signals with zeros to ensure that the reconstructed data is equal length to the data
use_tensorflow (bool): Use tensorflow as a backend for convolution and fft to speed up computation
verbose (bool): Whether to plot the steps of the algorithm
Project based on the cookiecutter data science project template. #cookiecutterdatascience
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
noisereduce-1.0.tar.gz
(6.4 kB
view details)
File details
Details for the file noisereduce-1.0.tar.gz
.
File metadata
- Download URL: noisereduce-1.0.tar.gz
- Upload date:
- Size: 6.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.20.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2dd9822e647649a55df08de7c20c1981e1ed47ed827f48da48a7dd5c7e668738 |
|
MD5 | 089a37552e0ba3afca95050647b6ae99 |
|
BLAKE2b-256 | 8909aed2851e5b1b9d41ab33505a670dbad72549c45688adba99d508fc13e0fe |