Skip to main content

Interface for NOMAD 4.4.0 blackbox optimization software.

Project description

NOMADLAD provides Python interface to the blackbox optimization software 
NOMAD (version 4) available from https://github.com/bbopt/nomad repository.

Installation

Starting with the release 1.0.0, the latest version of the package is
available from PyPi repository.

pip install nomadlad

Acknowledgements

This package is an alternative to the PyNomadBBO package interfacing the
blackbox optimization software NOMAD.


Building (Prerequisites)

- Python 3 (tested with version 3.12.4)
- Compiled NOMAD with static libraries (tested with version 4.4.0)
- GCC release that supports at least C++17 (tested with version 14.1.1)
- Exported the NOMAD_PATH environment variable

Building (A minimal build of NOMAD)

This is a considerably condensed version of the official installation guide
adapted to the purpose of manually building this module.

(Step 1) Download and extract the v4.4.0 release of NOMAD somewhere.

wget https://github.com/bbopt/nomad/archive/refs/tags/v.4.4.0.tar.gz
tar -zxf v.4.4.0.tar.gz

(Step 2) Enter the nomad-v.4.4.0 directory

cd nomad-v.4.4.0

(Step 3) Export path to the current directory (needed for the final step)

export NOMAD_PATH=$(pwd)

(Step 3) Prepare and build the core NOMAD library.

cmake -S . -B build \
-DBUILD_INTERFACE_PYTHON=ON \
-DBUILD_EXAMPLES=OFF \
-DTEST_OPENMP=OFF

cmake --build build --config Release --clean-first --target nomadStatic --parallel

Please note that you can set --parallel to the number of cores available.

(Step 5) Compile nomadlad module.

Please note that NOMAD_PATH must be exported for this to work.

(Option A) Install directly from a tagged commit

pip install --user --upgrade \
git+https://github.com/jan-provaznik/nomadlad.git@v1.0.0

(Option B) Build from a locally cloned repository. Enter the repository first.

python -m pip wheel -w dist -- .

(Step 6) Profit.

Documentation

The documentation is left as an exercise to the reader. See help(nomadlad).

The package exports the nomadlad.minimize procedure.
The examples provided with the package are intended to serve as a tutorial.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nomadlad-1.0.0-pp310-pypy310_pp73-win_amd64.whl (1.2 MB view details)

Uploaded PyPy Windows x86-64

nomadlad-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nomadlad-1.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (77.1 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

nomadlad-1.0.0-pp39-pypy39_pp73-win_amd64.whl (1.2 MB view details)

Uploaded PyPy Windows x86-64

nomadlad-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nomadlad-1.0.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (77.1 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

nomadlad-1.0.0-pp38-pypy38_pp73-win_amd64.whl (1.2 MB view details)

Uploaded PyPy Windows x86-64

nomadlad-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nomadlad-1.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (77.1 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nomadlad-1.0.0-cp312-cp312-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

nomadlad-1.0.0-cp312-cp312-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

nomadlad-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nomadlad-1.0.0-cp312-cp312-macosx_10_9_x86_64.whl (76.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

nomadlad-1.0.0-cp311-cp311-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

nomadlad-1.0.0-cp311-cp311-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

nomadlad-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nomadlad-1.0.0-cp311-cp311-macosx_10_9_x86_64.whl (77.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nomadlad-1.0.0-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

nomadlad-1.0.0-cp310-cp310-musllinux_1_2_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

nomadlad-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nomadlad-1.0.0-cp310-cp310-macosx_10_9_x86_64.whl (76.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nomadlad-1.0.0-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

nomadlad-1.0.0-cp39-cp39-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

nomadlad-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nomadlad-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl (76.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nomadlad-1.0.0-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

nomadlad-1.0.0-cp38-cp38-musllinux_1_2_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

nomadlad-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nomadlad-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl (76.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file nomadlad-1.0.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 218ac69d30cc0ed38e6d14d3d5a596931505b7d6640e54482c6a0b740a266c58
MD5 68607fd00ac491eb35ebe01e209afec4
BLAKE2b-256 781c7157d9039a13cb4a38c4c10b1cb413b858bc073bad25197bc5eda6569950

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1ecaef5ebe9818e970d70b2a667269e113b91bf0eccf5ad410fe6899b9fa136
MD5 c540fbbb0e548b381044ad4daf6b8be6
BLAKE2b-256 5fab05b8295ddef5adf9aa66b4f89d812cf51745ea54f8b267b3527021c754d8

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9957c09bb6299e33b8527bc27b9362580fee0a0a85bd3a50f62ed93031be0544
MD5 622ffcda678d621e7f17a1839b28dcd9
BLAKE2b-256 85a722a3043c758f8ba36704133bb6f7d32ca842a1318f83abc474d2c2e4a568

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fdb07de70aa88321d6bf0f8e48fa593eb7137c226ca1118c3e0e14c365b04b30
MD5 a9c496b403a5858073169b522ef05282
BLAKE2b-256 f9a299b9c8ff497049734901ce25596c5019058c9834d72c720e622783948885

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 044a048b9fba88680944cb0880f0f027cf65a7d4ff2e8f3cff56c8713db4744e
MD5 57e98f0a408d6e6fba2f4c41c7e68a05
BLAKE2b-256 ebe4a9ea7ff1196f6f6461175d6b55a7de1530051e8b2ce0f6cc40530271ba05

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 26d283075f29ed2d44e317d681cd386740cd12953015046ed65a489895055228
MD5 d17259f2da2e024c1739254e85882567
BLAKE2b-256 2d72b9a159e007baffc929336ae1ce12fcc2ff6a27267519bf82d5d675f70994

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 89aed07ab7e489d808e391b2db871c2e81156a55e0e2edc4b015b082c227d45c
MD5 d0d3252e9476e6214fd4815a145a3607
BLAKE2b-256 373875ae38ccefee0fa61d23bf4a26272a689c151eeec85e956740313fe5ab84

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1996930e88f07a8270265a240c989a3f1249d5fe482aebaa7cf014964933b687
MD5 09f0f98f920f881e83d82e2111336ac1
BLAKE2b-256 3f42540e29cf7693415d0a652e489618f83f8ea8a6bfcb485d5033b953894e4f

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 53c0fd36927a1b280df15e1ba6c98555bf3643f2c147623fe00999a417eefd62
MD5 dda4477d4577d3f2b86cea8b9eff9def
BLAKE2b-256 c219f5d68ac0bac6e5049399cd7a350596c69b764f061886c04180544b597169

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3f507769d4b8995549c587ebea9fbd0f45c5c744226ccaba4407cab3e03b5d78
MD5 7e0e10c54e9fd72c9f6cca7a4cf1e659
BLAKE2b-256 fb56233f335823e5aec7db7911c444dadc14b983870f76e3bed888f7f3841b14

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 905257c6865b5665c5d6f38e590fb5b80ff66346366337c73c122aa99a402081
MD5 3cfa4e5852eefdf997aa76b64daa0baf
BLAKE2b-256 e2571377c46671b7bb12afd049093d8ac3d69022ae3ccaf54fde7f178aa09bc2

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce490a54f6a927b05c61435b8d105791e7d0105ba2f555ecd37dbebe52c92795
MD5 b8d4d6227a4157a713cdcdc3c8df6076
BLAKE2b-256 54474d1f70b03a6673773bc73356ace5260f241a1e436149c3796c6b6a540d8a

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 575cb013ba0c348b4ebbd9c5e300ae937218bab9dbc1187f97fa6972fa2c3eec
MD5 321fd5e7b439dd2414f066d737225bfa
BLAKE2b-256 244b03c0d64e3dcab06fbbd71a293a5c65feeda32366a2505e2fde412e614d04

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0e9e07d43ec5ac90e631990f23995285de286ea673a926a3b6eb7afc7deb772a
MD5 312bbab7344e156039b8c9ad9db974c6
BLAKE2b-256 e7971d1c0d46759aafd3209074121c77e3eca617353f63d5690511fe0041313f

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7c4367cd000832ddf86a6348dedf2394f4d028f92df53257d51fcce1751f39c1
MD5 ac105266044d9dfc2405100409194c87
BLAKE2b-256 60f223ba7afa62eb163344b0a5493ae28316276f49682f1d8e3ef1b15aae74d9

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36eb406700317a8424dc5bce324923b3bedfb5a6900e907cd067780a6a206797
MD5 fb55ff628698b3761db97bf5b673409e
BLAKE2b-256 b1a9ef951720ed86fdbc01622587e0a15f88c6569cb31a66c40e477d1f1571a3

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 597e4040bb6b477e34307a305b5c49499acc8ceaa0547c5c3c7128901022ea37
MD5 3fc7c09bb0fedcee1ac8cb57c84a8bdf
BLAKE2b-256 98b034d1f7dce9f8509ad4d224126468ab5425cca9ebec7d34fe5500fe881004

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ae6622ccdcc9876499b43417c80e7a4805b956292cfb4ba5220cea58a9dbdea0
MD5 3fd1ff3539966d30ce1dec39907ef874
BLAKE2b-256 082a34a75639c555bcca7617c46b719760699a0a2bec3a00c398ac6fca10292c

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fda27eabecab146f749cc5486cb41de82186b059cbe06a139250551cc26eef23
MD5 c2f810c08dab57fe5c3becc531bd454a
BLAKE2b-256 c248fe327b796d1abbdb5161c6d3d7d6ea54e049e5cd05978156c64feb4d30db

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c760ff03dc816ea6e0de328d62010b395fa2b6a1cdb8cc1469554ec102a13e89
MD5 ccebb647af6564de4cda4ff120497cbc
BLAKE2b-256 42149f34af1380614529035158e1c136bd04cbdca84369264cd2849cbf5a683e

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 00a83ee809e1af2423934bb866d47d23e7f362ac0e9a669f0f4af92db2573226
MD5 4c5324756d7edcd4b3fda433d75506f5
BLAKE2b-256 540d9fadccbc5db06147622dd238d2402fe00c402836d08425d885079f27b898

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nomadlad-1.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for nomadlad-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 07d24d3c38b2c065e8c85ff48abb0b7adb394e9baf575822f2cf25e242495ce3
MD5 714a981f0b2af638514ba1865055ffbc
BLAKE2b-256 9704c8e836eadc2d620f9f8fd7f04ebd8fa2f31098bb7e126fe2f4fba12e3f45

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 673ce169306c049e31d49f68a0f45389e011d9a6d28c4b943effd8ed1d6f75f0
MD5 0b406429138cc8caeeac2d34d648de22
BLAKE2b-256 e7ae8e677cca65c28213e122a6df062e4e1debe0f6b7b034fe042d1fd8a3f409

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f55ab2e02470ae99189c40a2e788ea2259dca03c8a1590f00471ba4932893b4a
MD5 ad3517dad46b684930f691b0d7c31096
BLAKE2b-256 093cca605a2eb74fb9568da6ae231f4d085296691d006899479ebbf669b8c973

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 85221926c744522e053c85be9c927ed9f267654e7b24241fad47ae70efbb845d
MD5 f9620487a261b12668759587b3eb0f83
BLAKE2b-256 8436cad3c60d1f522017a1b4d6f1d6b546c51629d483b41bb34cd62244bacb91

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nomadlad-1.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for nomadlad-1.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 63bc103d137b3a08841cb2ae23efbfd873b21fa1fe035372f41d694097a1bdfd
MD5 8bf54296e8c87f9ca11733643d211a5a
BLAKE2b-256 2981c91a05d3c1bdc57ad24a74d37504e69a2b78fc983949657ef072d4c565c7

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 37229cf33206bedcecd3b6f717b2638ae77c1713918faeec5d677357c9f8f9b8
MD5 3eb8494d723a5e34dc9966c4dc34975a
BLAKE2b-256 ece9b75e92d2c7e94e145707b2bad963cf684ac8afdb51e7371ab26e8838e2bb

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ddae895e0d5cccb2460f1804966859174024657829213b538c60cb70aa8ed47
MD5 00f7554920977b04e9e6a9e1449959ea
BLAKE2b-256 dd84623f979b778155ad04ff14dca83b902417b54ed4ff7d6d4b4b4e9f837645

See more details on using hashes here.

File details

Details for the file nomadlad-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nomadlad-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 571af06b4742baa2ac8fbff9846cc2a7830f6ba9e0518a85ccb5813ab6639568
MD5 2c96e2127fbea8186957b8d427411c4c
BLAKE2b-256 0b4df7798173cd061dd6431c24797eeeeac4b9ed028502d19d1c003d68cec4e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page