Skip to main content

Python code that solves the 1D, steady, spherical slurry equations outlined in Wong et al (in prep, EPSL) (see also Wong et al. 2018)

Project description

Build Status

slurpy

Python module to solve the 1D, steady, spherical slurry system outlined in Wong et al. (2021) (see also Wong et al. 2018).

Getting Started

Prerequisites

Installing

Conda:

conda install -c jnywong nondim-slurry

Pip:

pip install nondim-slurry

Git:

Find the latest version of the repository here.

Package structure

slurpy/
  __init__.py
  coreproperties.py
  data_utils.py
  getparameters.py
  lookup.py
  lookupdata/
    denPREM.csv
    gravPREM.csv
    presPREM.csv
    radAK135.csv
    radPREM.csv
    vpAK135.csv
    vpPREM.csv
  plot_utils.py
  scripts/
    parameter_search.py
    seismic.py
    sensitivity.py
  slurry.py

Example scripts

Parameter search

  1. Open scripts/parameter_search.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Show plots?
plotOn=1 # show temp, xi, solid flux and density profiles

# Input parameters
layer_thicknesses=np.array([150e3]) # (m)
thermal_conductivities=np.array([100.]) # (W m^-1 K^-1)
icb_heatfluxes=np.array([3.4]) # (TW)
csb_heatfluxes=np.array([7.4]) # (TW)

h=0.05 # stepsize of heat flux through parameter space
  1. Run parameter_search.py

  2. Admire the output:

Sensitivity study

  1. Open scripts/sensitivity.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Save plot?
saveOn=0

# Input parameters
layer_thickness=150e3 # (m)
thermal_conductivity=100. # (W m^-1 K^-1)
icb_heatflux=2.5 # (TW)
csb_heatflux=5.0 # (TW)
h=0.05 # stepsize of heat flux through parameter space

# Sensitivity study
csb_temp = np.arange(4500.,6100.,100) # (K)
csb_oxy = np.arange(2,12.5,0.5) # (mol.%)
sed_con= np.array([1e-5,1e-4,1e-3,1e-2,1e-1]) # (kg s/m^3) pre-factor in sedimentation coefficient, b(phi)
  1. Run sensitivity.py

  2. Admire the output:

hello!

Links

Authors

  • Jenny Wong - University of Leeds - Institut de Physique du Globe de Paris - Institut des Sciences de la Terre
  • Chris Davies - University of Leeds
  • Chris Jones - University of Leeds

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

  • ERC SEIC
  • Del Duca Foundation
  • EPSRC Centre for Doctoral Training in Fluid Dynamics

:tada:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nondim-slurry-0.1.tar.gz (23.2 kB view details)

Uploaded Source

Built Distribution

nondim_slurry-0.1-py3-none-any.whl (26.3 kB view details)

Uploaded Python 3

File details

Details for the file nondim-slurry-0.1.tar.gz.

File metadata

  • Download URL: nondim-slurry-0.1.tar.gz
  • Upload date:
  • Size: 23.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim-slurry-0.1.tar.gz
Algorithm Hash digest
SHA256 f832c1d9c431693df214ab1e081065adf142df82991c5085e65448a929a044fc
MD5 95ba05da5f67ee4f6f8cc279b3c349c2
BLAKE2b-256 cbd4d5762b4bdb3d7411e49006f12c39815228298fa5c75d4be521d71aff127d

See more details on using hashes here.

File details

Details for the file nondim_slurry-0.1-py3-none-any.whl.

File metadata

  • Download URL: nondim_slurry-0.1-py3-none-any.whl
  • Upload date:
  • Size: 26.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim_slurry-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b1b5e262a786dd02177d376d01866c3934e1a7d0676555f36e72333ffb1b8166
MD5 a0e99ec2a5cd64c649a0ef7a695b7ebe
BLAKE2b-256 7f40e9e4cd0fa89b1ce1ce21c73d92c5a05c06cb9214bdbfebc70cdd38944e23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page