Skip to main content

Python code that solves the 1D, steady, spherical slurry equations outlined in Wong et al (in prep) (see also Wong et al. 2018)

Project description

slurpy

Solve the 1D, steady, spherical slurry system outlined in Wong et al. (in prep) (see also Wong et al. 2018).

Getting Started

Prerequisites

Installing

Conda:

conda install nondim-slurry

Pip:

pip install nondim-slurry

Git: Download the latest version of the repository here.

A simple example

Sample scripts can be found within the module package slurpy/scripts.

  1. Open parameter_search.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Show plots?
plotOn=1 # show temp, xi, solid flux and density profiles

# Input parameters
layer_thicknesses=np.array([150e3]) # (m)
thermal_conductivities=np.array([100.]) # (W m^-1 K^-1)
icb_heatfluxes=np.array([3.4]) # (TW)
csb_heatfluxes=np.array([7.4]) # (TW)

h=0.05 # stepsize of heat flux through parameter space

  1. Run parameter_search.py

  2. Admire the output:

Example: Sensitivity study

  1. Open sensitivity.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Save plot?
saveOn=0

# Input parameters
layer_thickness=150e3 # (m)
thermal_conductivity=100. # (W m^-1 K^-1)
icb_heatflux=2.5 # (TW)
csb_heatflux=5.0 # (TW)
h=0.05 # stepsize of heat flux through parameter space

# Sensitivity study
csb_temp = np.arange(4500.,6100.,100) # (K)
csb_oxy = np.arange(2,12.5,0.5) # (mol.%)
sed_con= np.array([1e-5,1e-4,1e-3,1e-2,1e-1]) # (kg s/m^3) pre-factor in sedimentation coefficient, b(phi)

  1. Run sensitivity.py

  2. Admire the output:

hello!

Links

Authors

  • Jenny Wong - Institut de Physique du Globe de Paris
  • Chris Davies - University of Leeds
  • Chris Jones - University of Leeds

License

This project is licensed under the MIT License - see the license.md file for details

Acknowledgments

  • Del Duca Foundation
  • EPSRC Centre for Doctoral Training in Fluid Dynamics

:tada:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nondim-slurry-0.0.12.tar.gz (21.0 kB view details)

Uploaded Source

Built Distribution

nondim_slurry-0.0.12-py3-none-any.whl (26.2 kB view details)

Uploaded Python 3

File details

Details for the file nondim-slurry-0.0.12.tar.gz.

File metadata

  • Download URL: nondim-slurry-0.0.12.tar.gz
  • Upload date:
  • Size: 21.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim-slurry-0.0.12.tar.gz
Algorithm Hash digest
SHA256 bf960e09eb03c4721413d2cc6b5881ce57fbbedb1c13c8ad7fea76266a109e47
MD5 9e38c5be584e17dec90cebaa2fae782b
BLAKE2b-256 d5e254b03060ef0a795bf69d7512e844616fd56b594145b071d873902a085522

See more details on using hashes here.

File details

Details for the file nondim_slurry-0.0.12-py3-none-any.whl.

File metadata

  • Download URL: nondim_slurry-0.0.12-py3-none-any.whl
  • Upload date:
  • Size: 26.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim_slurry-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 acc211ab5eb43f17f96980410a8acccbbf3d525a92fae01f53aff8e1aaa898f0
MD5 eea7b045b4939031c16fd62ec6b5bf6e
BLAKE2b-256 53c8834fe4c7fb4b7240ed830c9db76b20c0e6f43dda4890029a9da725f748f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page