Skip to main content

Python code that solves the 1D, steady, spherical slurry equations outlined in Wong et al (in prep) (see also Wong et al. 2018)

Project description

slurpy

Solve the 1D, steady, spherical slurry system outlined in Wong et al. (in prep) (see also Wong et al. 2018).

Getting Started

Prerequisites

Installing

Conda:

conda install nondim-slurry

Pip:

pip install nondim-slurry

Git: Download the latest version of the repository here.

A simple example

Sample scripts can be found within the module package slurpy/scripts.

  1. Open parameter_search.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Show plots?
plotOn=1 # show temp, xi, solid flux and density profiles

# Input parameters
layer_thicknesses=np.array([150e3]) # (m)
thermal_conductivities=np.array([100.]) # (W m^-1 K^-1)
icb_heatfluxes=np.array([3.4]) # (TW)
csb_heatfluxes=np.array([7.4]) # (TW)

h=0.05 # stepsize of heat flux through parameter space

  1. Run parameter_search.py

  2. Admire the output:

Example: Sensitivity study

  1. Open sensitivity.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Save plot?
saveOn=0

# Input parameters
layer_thickness=150e3 # (m)
thermal_conductivity=100. # (W m^-1 K^-1)
icb_heatflux=2.5 # (TW)
csb_heatflux=5.0 # (TW)
h=0.05 # stepsize of heat flux through parameter space

# Sensitivity study
csb_temp = np.arange(4500.,6100.,100) # (K)
csb_oxy = np.arange(2,12.5,0.5) # (mol.%)
sed_con= np.array([1e-5,1e-4,1e-3,1e-2,1e-1]) # (kg s/m^3) pre-factor in sedimentation coefficient, b(phi)

  1. Run sensitivity.py

  2. Admire the output:

hello!

Links

Authors

  • Jenny Wong - Institut de Physique du Globe de Paris
  • Chris Davies - University of Leeds
  • Chris Jones - University of Leeds

License

This project is licensed under the MIT License - see the license.md file for details

Acknowledgments

  • Del Duca Foundation
  • EPSRC Centre for Doctoral Training in Fluid Dynamics

:tada:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nondim-slurry-0.0.13.tar.gz (21.0 kB view details)

Uploaded Source

Built Distribution

nondim_slurry-0.0.13-py3-none-any.whl (22.1 kB view details)

Uploaded Python 3

File details

Details for the file nondim-slurry-0.0.13.tar.gz.

File metadata

  • Download URL: nondim-slurry-0.0.13.tar.gz
  • Upload date:
  • Size: 21.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim-slurry-0.0.13.tar.gz
Algorithm Hash digest
SHA256 1546ab650f74514f2516592765a298925cc1d81c843375fc4393e71a03e6bfc1
MD5 4d1afa130416815cd430a8337677d424
BLAKE2b-256 2277e2845761d694932f7af0403c188605a209b96b47fd5822778bd7adff44e3

See more details on using hashes here.

File details

Details for the file nondim_slurry-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: nondim_slurry-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim_slurry-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 0912f85d23c6454366b85e3ae286dbf808d679f50b68989d8c6734cef821e5bf
MD5 10909438f4d3c2f8b4bd3dc0cebaaefc
BLAKE2b-256 ddb29c36210ee6ebbcf6fc6973da3b6577099009ed966e2659e64304c5ab9678

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page