Skip to main content

Python code that solves the 1D, steady, spherical slurry equations outlined in Wong et al (in prep) (see also Wong et al. 2018)

Project description

slurpy

Solve the 1D, steady, spherical slurry system outlined in Wong et al. (in prep) (see also Wong et al. 2018).

Getting Started

Prerequisites

Installing

Conda:

conda install nondim-slurry

Pip:

pip install nondim-slurry

Git: Download the latest version of the repository here.

A simple example

Sample scripts can be found within the module package slurpy/scripts.

  1. Open parameter_search.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Show plots?
plotOn=1 # show temp, xi, solid flux and density profiles

# Input parameters
layer_thicknesses=np.array([150e3]) # (m)
thermal_conductivities=np.array([100.]) # (W m^-1 K^-1)
icb_heatfluxes=np.array([3.4]) # (TW)
csb_heatfluxes=np.array([7.4]) # (TW)

h=0.05 # stepsize of heat flux through parameter space

  1. Run parameter_search.py

  2. Admire the output:

Example: Sensitivity study

  1. Open sensitivity.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Save plot?
saveOn=0

# Input parameters
layer_thickness=150e3 # (m)
thermal_conductivity=100. # (W m^-1 K^-1)
icb_heatflux=2.5 # (TW)
csb_heatflux=5.0 # (TW)
h=0.05 # stepsize of heat flux through parameter space

# Sensitivity study
csb_temp = np.arange(4500.,6100.,100) # (K)
csb_oxy = np.arange(2,12.5,0.5) # (mol.%)
sed_con= np.array([1e-5,1e-4,1e-3,1e-2,1e-1]) # (kg s/m^3) pre-factor in sedimentation coefficient, b(phi)

  1. Run sensitivity.py

  2. Admire the output:

hello!

Links

Authors

  • Jenny Wong - Institut de Physique du Globe de Paris
  • Chris Davies - University of Leeds
  • Chris Jones - University of Leeds

License

This project is licensed under the MIT License - see the license.md file for details

Acknowledgments

  • Del Duca Foundation
  • EPSRC Centre for Doctoral Training in Fluid Dynamics

:tada:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nondim-slurry-0.0.14.tar.gz (21.1 kB view details)

Uploaded Source

Built Distribution

nondim_slurry-0.0.14-py3-none-any.whl (22.1 kB view details)

Uploaded Python 3

File details

Details for the file nondim-slurry-0.0.14.tar.gz.

File metadata

  • Download URL: nondim-slurry-0.0.14.tar.gz
  • Upload date:
  • Size: 21.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim-slurry-0.0.14.tar.gz
Algorithm Hash digest
SHA256 e463eca01a80e9a868ab4d9cb00111d286e84faf3fe06b6a85e422c44513be8c
MD5 23c4619865111dcf2051d50d7b8b70c1
BLAKE2b-256 3905a80ad6e6627339881a1ffc6531b05b2e692b9670ca6782d8dab09ccf96cb

See more details on using hashes here.

File details

Details for the file nondim_slurry-0.0.14-py3-none-any.whl.

File metadata

  • Download URL: nondim_slurry-0.0.14-py3-none-any.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim_slurry-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 a8aa40f65be5ceb1516a7acf2d93a5aea9b7f1513ec80dac926db30d11019b5e
MD5 fc3662f1081c9ec7c03a14fa95fe0342
BLAKE2b-256 9520bd3e9595e908cf1ea942caa694e48b0f288e767610f4d6690efdae78ea73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page