Skip to main content

Python code that solves the 1D, steady, spherical slurry equations outlined in Wong et al (in prep) (see also Wong et al. 2018)

Project description

slurpy

Python module to solve the 1D, steady, spherical slurry system outlined in Wong et al. (in prep) (see also Wong et al. 2018).

Getting Started

Prerequisites

Installing

Conda:

conda install -c jnywong nondim-slurry

Pip:

pip install nondim-slurry

Git:

Download the latest version of the repository here.

Example scripts

Sample scripts can be found within the module package $PATH/lib/python3.8/site-packages/slurpy/scripts.

Parameter search

  1. Open scripts/parameter_search.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Show plots?
plotOn=1 # show temp, xi, solid flux and density profiles

# Input parameters
layer_thicknesses=np.array([150e3]) # (m)
thermal_conductivities=np.array([100.]) # (W m^-1 K^-1)
icb_heatfluxes=np.array([3.4]) # (TW)
csb_heatfluxes=np.array([7.4]) # (TW)

h=0.05 # stepsize of heat flux through parameter space
  1. Run parameter_search.py

  2. Admire the output:

Sensitivity study

  1. Open scripts/sensitivity.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Save plot?
saveOn=0

# Input parameters
layer_thickness=150e3 # (m)
thermal_conductivity=100. # (W m^-1 K^-1)
icb_heatflux=2.5 # (TW)
csb_heatflux=5.0 # (TW)
h=0.05 # stepsize of heat flux through parameter space

# Sensitivity study
csb_temp = np.arange(4500.,6100.,100) # (K)
csb_oxy = np.arange(2,12.5,0.5) # (mol.%)
sed_con= np.array([1e-5,1e-4,1e-3,1e-2,1e-1]) # (kg s/m^3) pre-factor in sedimentation coefficient, b(phi)
  1. Run sensitivity.py

  2. Admire the output:

hello!

Links

Authors

  • Jenny Wong - University of Leeds - Institut de Physique du Globe de Paris - Institut des Sciences de la Terre
  • Chris Davies - University of Leeds
  • Chris Jones - University of Leeds

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

  • ERC SEIC
  • Del Duca Foundation
  • EPSRC Centre for Doctoral Training in Fluid Dynamics

:tada:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nondim-slurry-0.0.17.tar.gz (23.2 kB view details)

Uploaded Source

Built Distribution

nondim_slurry-0.0.17-py3-none-any.whl (26.3 kB view details)

Uploaded Python 3

File details

Details for the file nondim-slurry-0.0.17.tar.gz.

File metadata

  • Download URL: nondim-slurry-0.0.17.tar.gz
  • Upload date:
  • Size: 23.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.7

File hashes

Hashes for nondim-slurry-0.0.17.tar.gz
Algorithm Hash digest
SHA256 5e33e9d3522e832e554b6eea9fc5cbfb39e4db4b30efcebf948518ebf79e754f
MD5 b589403d8b0f32d31ce3190623eefc24
BLAKE2b-256 ed63d5fcfad6372f8b9d3eab07e106bfa24945cc06eb8ce90ac326b11bd8e5ae

See more details on using hashes here.

File details

Details for the file nondim_slurry-0.0.17-py3-none-any.whl.

File metadata

  • Download URL: nondim_slurry-0.0.17-py3-none-any.whl
  • Upload date:
  • Size: 26.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.7

File hashes

Hashes for nondim_slurry-0.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 e3bc2b7a2e81f4e55270abb19acede76f7d035909d09f128482c83e713c4fed3
MD5 7e56d3f0d0691f2f713a7a1df48d818a
BLAKE2b-256 d845717ed2bd078e7d3e57ca022415e4f26553adb57deefde2cb2f4b2958b5c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page