Skip to main content

Python code that solves the 1D, steady, spherical slurry equations outlined in Wong et al (in prep) (see also Wong et al. 2018)

Project description

slurpy

Python module to solve the 1D, steady, spherical slurry system outlined in Wong et al. (in prep) (see also Wong et al. 2018).

Getting Started

Prerequisites

Installing

Conda:

conda install -c jnywong nondim-slurry

Pip:

pip install nondim-slurry

Git:

Download the latest version of the repository here.

Example scripts

Sample scripts can be found within the module package $PATH/lib/python3.8/site-packages/slurpy/scripts.

Parameter search

  1. Open scripts/parameter_search.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Show plots?
plotOn=1 # show temp, xi, solid flux and density profiles

# Input parameters
layer_thicknesses=np.array([150e3]) # (m)
thermal_conductivities=np.array([100.]) # (W m^-1 K^-1)
icb_heatfluxes=np.array([3.4]) # (TW)
csb_heatfluxes=np.array([7.4]) # (TW)

h=0.05 # stepsize of heat flux through parameter space
  1. Run parameter_search.py

  2. Admire the output:

Sensitivity study

  1. Open scripts/sensitivity.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Save plot?
saveOn=0

# Input parameters
layer_thickness=150e3 # (m)
thermal_conductivity=100. # (W m^-1 K^-1)
icb_heatflux=2.5 # (TW)
csb_heatflux=5.0 # (TW)
h=0.05 # stepsize of heat flux through parameter space

# Sensitivity study
csb_temp = np.arange(4500.,6100.,100) # (K)
csb_oxy = np.arange(2,12.5,0.5) # (mol.%)
sed_con= np.array([1e-5,1e-4,1e-3,1e-2,1e-1]) # (kg s/m^3) pre-factor in sedimentation coefficient, b(phi)
  1. Run sensitivity.py

  2. Admire the output:

hello!

Links

Authors

  • Jenny Wong - University of Leeds - Institut de Physique du Globe de Paris - Institut des Sciences de la Terre
  • Chris Davies - University of Leeds
  • Chris Jones - University of Leeds

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

  • ERC SEIC
  • Del Duca Foundation
  • EPSRC Centre for Doctoral Training in Fluid Dynamics

:tada:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nondim-slurry-0.0.18.tar.gz (23.2 kB view details)

Uploaded Source

Built Distribution

nondim_slurry-0.0.18-py3-none-any.whl (26.3 kB view details)

Uploaded Python 3

File details

Details for the file nondim-slurry-0.0.18.tar.gz.

File metadata

  • Download URL: nondim-slurry-0.0.18.tar.gz
  • Upload date:
  • Size: 23.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.7

File hashes

Hashes for nondim-slurry-0.0.18.tar.gz
Algorithm Hash digest
SHA256 5b06db51f9953bc81955bba8ffe6e5569182e7529ad9861f914d2e941aebbdd1
MD5 dc941b1e6fe8ff39c80caaed9766c076
BLAKE2b-256 1ac8d2d29c6840d39443c6a0ce1883c0fd92ef196396c6a35b0ef6fbf66bba2c

See more details on using hashes here.

File details

Details for the file nondim_slurry-0.0.18-py3-none-any.whl.

File metadata

  • Download URL: nondim_slurry-0.0.18-py3-none-any.whl
  • Upload date:
  • Size: 26.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.7

File hashes

Hashes for nondim_slurry-0.0.18-py3-none-any.whl
Algorithm Hash digest
SHA256 4475969460e778b9183794228d30376cb5dc9d36b922a993658548659d5819f5
MD5 eada4bb384edebcb321cdbd63254a950
BLAKE2b-256 46cfa5466771bfe413a8f3cbd3f1916570594aa8335479e756f9929b8d928aad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page