Skip to main content

Python code that solves the 1D, steady, spherical slurry equations outlined in Wong et al (in prep) (see also Wong et al. 2018)

Project description

slurpy

Solve the 1D, steady, spherical slurry system outlined in Wong et al. (in prep) (see also Wong et al. 2018).

Getting Started

Prerequisites

Installing

Conda:

conda install nondim-slurry

Pip:

pip install nondim-slurry

Git: Download the latest version of the repository here.

A simple example

Sample scripts can be found within the module package slurpy/scripts.

  1. Open parameter_search.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Show plots?
plotOn=1 # show temp, xi, solid flux and density profiles

# Input parameters
layer_thicknesses=np.array([150e3]) # (m)
thermal_conductivities=np.array([100.]) # (W m^-1 K^-1)
icb_heatfluxes=np.array([3.4]) # (TW)
csb_heatfluxes=np.array([7.4]) # (TW)

h=0.05 # stepsize of heat flux through parameter space

  1. Run parameter_search.py

  2. Admire the output:

Example: Sensitivity study

  1. Open sensitivity.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Save plot?
saveOn=0

# Input parameters
layer_thickness=150e3 # (m)
thermal_conductivity=100. # (W m^-1 K^-1)
icb_heatflux=2.5 # (TW)
csb_heatflux=5.0 # (TW)
h=0.05 # stepsize of heat flux through parameter space

# Sensitivity study
csb_temp = np.arange(4500.,6100.,100) # (K)
csb_oxy = np.arange(2,12.5,0.5) # (mol.%)
sed_con= np.array([1e-5,1e-4,1e-3,1e-2,1e-1]) # (kg s/m^3) pre-factor in sedimentation coefficient, b(phi)

  1. Run sensitivity.py

  2. Admire the output:

hello!

Links

Authors

  • Jenny Wong - Institut de Physique du Globe de Paris
  • Chris Davies - University of Leeds
  • Chris Jones - University of Leeds

License

This project is licensed under the MIT License - see the license.md file for details

Acknowledgments

  • Del Duca Foundation
  • EPSRC Centre for Doctoral Training in Fluid Dynamics

:tada:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nondim-slurry-0.0.3.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

nondim_slurry-0.0.3-py3-none-any.whl (25.3 kB view details)

Uploaded Python 3

File details

Details for the file nondim-slurry-0.0.3.tar.gz.

File metadata

  • Download URL: nondim-slurry-0.0.3.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim-slurry-0.0.3.tar.gz
Algorithm Hash digest
SHA256 edcf5eaf41861d0d53d41e371ff4a706841d1efd58d41796a72e4f290af623c2
MD5 42ae65d8cde6b77e29f91104f486caea
BLAKE2b-256 fca0639eff7edf46b5a6956f4a57a2d6c9dce81aab2ca73bc5b1b101972717e0

See more details on using hashes here.

File details

Details for the file nondim_slurry-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: nondim_slurry-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 25.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim_slurry-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 98b2cae7007f338b13b73569f3dba2bfb7a5c3aec0cddffbcbf274ebeeae3568
MD5 604d6cd8ebc2d15780466ec53fd0350d
BLAKE2b-256 b0b6e5197466aab633867a4f3db82d0dfc9a3cb574153e4952c86353d40fa6a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page