Skip to main content

Python code that solves the 1D, steady, spherical slurry equations outlined in Wong et al (in prep) (see also Wong et al. 2018)

Project description

slurpy

Solve the 1D, steady, spherical slurry system outlined in Wong et al. (in prep) (see also Wong et al. 2018).

Getting Started

Prerequisites

Installing

Conda:

conda install nondim-slurry

Pip:

pip install nondim-slurry

Git: Download the latest version of the repository here.

A simple example

Sample scripts can be found within the module package slurpy/scripts.

  1. Open parameter_search.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Show plots?
plotOn=1 # show temp, xi, solid flux and density profiles

# Input parameters
layer_thicknesses=np.array([150e3]) # (m)
thermal_conductivities=np.array([100.]) # (W m^-1 K^-1)
icb_heatfluxes=np.array([3.4]) # (TW)
csb_heatfluxes=np.array([7.4]) # (TW)

h=0.05 # stepsize of heat flux through parameter space

  1. Run parameter_search.py

  2. Admire the output:

Example: Sensitivity study

  1. Open sensitivity.py

  2. Enter some input parameters. For example, try:

# %% MODEL INPUTS
# Save plot?
saveOn=0

# Input parameters
layer_thickness=150e3 # (m)
thermal_conductivity=100. # (W m^-1 K^-1)
icb_heatflux=2.5 # (TW)
csb_heatflux=5.0 # (TW)
h=0.05 # stepsize of heat flux through parameter space

# Sensitivity study
csb_temp = np.arange(4500.,6100.,100) # (K)
csb_oxy = np.arange(2,12.5,0.5) # (mol.%)
sed_con= np.array([1e-5,1e-4,1e-3,1e-2,1e-1]) # (kg s/m^3) pre-factor in sedimentation coefficient, b(phi)

  1. Run sensitivity.py

  2. Admire the output:

hello!

Links

Authors

  • Jenny Wong - Institut de Physique du Globe de Paris
  • Chris Davies - University of Leeds
  • Chris Jones - University of Leeds

License

This project is licensed under the MIT License - see the license.md file for details

Acknowledgments

  • Del Duca Foundation
  • EPSRC Centre for Doctoral Training in Fluid Dynamics

:tada:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nondim-slurry-0.0.6.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

nondim_slurry-0.0.6-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file nondim-slurry-0.0.6.tar.gz.

File metadata

  • Download URL: nondim-slurry-0.0.6.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim-slurry-0.0.6.tar.gz
Algorithm Hash digest
SHA256 df694556ef462d703fa40dbccf62933b798613a9000dc4ae327eed5d692a8de3
MD5 5711af2510e59dffcca25738ccdf2136
BLAKE2b-256 216a7414bcb4b57dab998f472c3ac8a84385a43be82c049748a38a4043dccc95

See more details on using hashes here.

File details

Details for the file nondim_slurry-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: nondim_slurry-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5

File hashes

Hashes for nondim_slurry-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 25d099d24d739fd5f90e4b58e5ef86a9810d589898af1df9cfaf1640f308a94e
MD5 6d21c8dd7a5b3e18cf464b1d3aff2004
BLAKE2b-256 38238d2bb9a17a5bd84299c073e2836ce4a0c8af64e74df7c58fa322288b4f6e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page