Nonlinear transfer matrix method
Project description
NonlinearTMM : Nonlinear transfer-matrix method
Overview
Transfer-matrix method (TMM) is powerful analytical method to solve Maxwell equations in layered structures. However, standard TMM is limited by infinite plane waves (e.g no Gaussian beam excitation) and it is only limited to linear processes (i.e calculation of second-harmonic, sum-frequency, difference-frequency generation is not possible). The aim of this package is extand standard TMM to include those features. The physics of those extensions are described in the follwoing publications, first extends the standard TMM to nonlinear processes and the second extends to the beams with arbritary profiles.
- A. Loot and V. Hizhnyakov, “Extension of standard transfer-matrix method for three-wave mixing for plasmonic structures,” Appl. Phys. A, vol. 123, no. 3, p. 152, 2017.
- A. Loot and V. Hizhnyakov, “Modeling of enhanced spontaneous parametric down-conversion in plasmonic and dielectric structures with realistic waves,” Journal of Optics, vol. 20, no. 055502, 2018.
For additional details see our documentation https://ardiloot.github.io/NonlinearTMM/. For getting started guide see Getting started.
Main features
In addition to the standard TMM features this package also supports:
- Calculation of Gaussian beam (or any other beam) propagartion inside layered structures
- Calculation of nonlinear processes SHG/SFG/DFG
Technical features
- Written in C++
- Python wrapper written in Cython
- Parallerization through OpenMP
- Use of SSE instructions for speedup
Documentation
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file NonlinearTMM-1.3.11.tar.gz
.
File metadata
- Download URL: NonlinearTMM-1.3.11.tar.gz
- Upload date:
- Size: 3.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 401e4bcbdf38a915e77305617cc06920890f00aec5b62ee7c40310ddea635c70 |
|
MD5 | a1ad8f9424d2d51bc60a28e0db13e364 |
|
BLAKE2b-256 | 7815ba8cd6848b73ff6b505d66ab7e412396180014dddf81ff31288c83632ab4 |
File details
Details for the file NonlinearTMM-1.3.11-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 154.3 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f562688976be35b6373d0841d71d3445b06a43c67072ba1882b09d6fc377c391 |
|
MD5 | 8ed82eba53937e20ca8590c803326a60 |
|
BLAKE2b-256 | 5652afcf4e828d7c5ddac47425e5dd6c5b31836bc2577b82f5c65f9270e9b6ce |
File details
Details for the file NonlinearTMM-1.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 13ee24c3cccaf2cb62d3deae45ff7f88c7e2633496aa0e3271e7518a83d4e819 |
|
MD5 | 5e4a68fa909d79e7e3b16aa6d27552e1 |
|
BLAKE2b-256 | 35b35e54809a36ac74ffd42f82d63f9279cfb4db62db8bb32db7901dbd5912fe |
File details
Details for the file NonlinearTMM-1.3.11-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 155.7 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e65ae06e9ae78cf03e8668f3129f3aae0b487a1c1dc37b40e3fb5accd3ab3a7 |
|
MD5 | 2cf7bd9839ba3085c5d188328b937b02 |
|
BLAKE2b-256 | df1b0c7bb9d6ba1372e0a51fcc407bcd1bfddb50175d1d48480ff4bbab994499 |
File details
Details for the file NonlinearTMM-1.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff90a572bc96d156b5c0da0b7cd9012fba8d95d4961b11269f08391d29f75208 |
|
MD5 | a734d09169d072b82a8318a22b5684bb |
|
BLAKE2b-256 | 902225046565eaea9b364ab2702249cc52bf2c4c92e797ecfdbebd044f79b598 |
File details
Details for the file NonlinearTMM-1.3.11-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 156.5 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9722dc1868117a74690561130ae88775a6b4598fddc5e69033cf3f89f3da7a0d |
|
MD5 | 2284a28dff9c82bfaad144c86510398e |
|
BLAKE2b-256 | d86614efb088f9486b0c9b43a371ee61c2f10db5b3c0bf24329723047eeb3a39 |
File details
Details for the file NonlinearTMM-1.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fbd3eeb41029525f7f34a014d812fdb3eedf8c552005d09c9a74f3ac76ae52f4 |
|
MD5 | 77a075e82316e8deb45373af9af84fdb |
|
BLAKE2b-256 | 5a86fcc395dbfbf5a4ced8b572106ee471f8046e705758b4f0e732eb53d5e7d0 |
File details
Details for the file NonlinearTMM-1.3.11-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 156.9 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b204f1156b0f7ab19b22d61f61e3e90857d4f979f6cd341d34230c7702270a50 |
|
MD5 | f1741c250a7be1b250b5b57e4c8e25d3 |
|
BLAKE2b-256 | 8424795f5e2b24ffd44147fd90b5abda0606408c9e482db02b108c20dc5d8a55 |
File details
Details for the file NonlinearTMM-1.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7afcc894d69fdfa1c43e0ea9cbe3b79b0700a90b04e232aeeebbd5d37fe7f30b |
|
MD5 | 2aeb5fde769d91ef0f7390964c40cbc1 |
|
BLAKE2b-256 | 7a6e83a0c9b854570e4c3d3d2d53c6289a91af4eea59365f81c49a5741b22712 |
File details
Details for the file NonlinearTMM-1.3.11-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 154.9 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 934b87948e93f3575b78cdb785c1345000f4866a95447a7ae79fdaa3e1d9c8ed |
|
MD5 | 546dfb3a5e7c8c18a85fc14a96b5d180 |
|
BLAKE2b-256 | 1feea7e00e8eca1edd2af528b5e2c046d35d6d61e1770bfa84658fd799d6be4d |
File details
Details for the file NonlinearTMM-1.3.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 4.2 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 13c53b62bc52812d31e2c043ad455e03da489fdca8789e766456de0bdec28133 |
|
MD5 | 09023c939063f143a1a6a4996793fd1e |
|
BLAKE2b-256 | 67bc2411ff894f0fa8e5e22d7dc61156aa5d36e414b911b89a01d54593f3d384 |
File details
Details for the file NonlinearTMM-1.3.11-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 174.9 kB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8f0000e8ec06048f49ecb809bc52429a82d0ed22bbe1ff23c92d061d80653b17 |
|
MD5 | 2f3133aa9010667323aea03ed5cc7144 |
|
BLAKE2b-256 | 0b1931198e30d67b414a88b0bd115bd8f92c19b26468ab25e4ff5b310121a789 |
File details
Details for the file NonlinearTMM-1.3.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: NonlinearTMM-1.3.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 4.1 MB
- Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 03340f8ddb1da356ad77de693e460be79108994c57bfae1aec91062a54f0bcd3 |
|
MD5 | b2782d85fccfe3249ef326db70f8554e |
|
BLAKE2b-256 | fb85f9e48c1aa840c1c14f780cc71d6e4676f4237d915756ee4e2dc54ea569f4 |