Skip to main content

Nonlinear transfer matrix method

Project description

PyPI version Build status Build Status

NonlinearTMM : Nonlinear transfer-matrix method

Overview

Transfer-matrix method (TMM) is powerful analytical method to solve Maxwell equations in layered structures. However, standard TMM is limited by infinite plane waves (e.g no Gaussian beam excitation) and it is only limited to linear processes (i.e calculation of second-harmonic, sum-frequency, difference-frequency generation is not possible). The aim of this package is extand standard TMM to include those features. The physics of those extensions are described in the follwoing publications, first extends the standard TMM to nonlinear processes and the second extends to the beams with arbritary profiles.

  1. A. Loot and V. Hizhnyakov, “Extension of standard transfer-matrix method for three-wave mixing for plasmonic structures,” Appl. Phys. A, vol. 123, no. 3, p. 152, 2017.
  2. A. Loot and V. Hizhnyakov, “Modeling of enhanced spontaneous parametric down-conversion in plasmonic and dielectric structures with realistic waves,” Journal of Optics, vol. 20, no. 055502, 2018.

For additional details see our documentation https://ardiloot.github.io/NonlinearTMM/. For getting started guide see Getting started.

Main features

In addition to the standard TMM features this package also supports:

  • Calculation of Gaussian beam (or any other beam) propagartion inside layered structures
  • Calculation of nonlinear processes SHG/SFG/DFG

Technical features

  • Written in C++
  • Python wrapper written in Cython
  • Parallerization through OpenMP
  • Use of SSE instructions for speedup

Documentation

https://ardiloot.github.io/NonlinearTMM/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NonlinearTMM-1.3.11.tar.gz (3.1 MB view details)

Uploaded Source

Built Distributions

NonlinearTMM-1.3.11-cp311-cp311-win_amd64.whl (154.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

NonlinearTMM-1.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

NonlinearTMM-1.3.11-cp310-cp310-win_amd64.whl (155.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

NonlinearTMM-1.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

NonlinearTMM-1.3.11-cp39-cp39-win_amd64.whl (156.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

NonlinearTMM-1.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

NonlinearTMM-1.3.11-cp38-cp38-win_amd64.whl (156.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

NonlinearTMM-1.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

NonlinearTMM-1.3.11-cp37-cp37m-win_amd64.whl (154.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

NonlinearTMM-1.3.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

NonlinearTMM-1.3.11-cp36-cp36m-win_amd64.whl (174.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

NonlinearTMM-1.3.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file NonlinearTMM-1.3.11.tar.gz.

File metadata

  • Download URL: NonlinearTMM-1.3.11.tar.gz
  • Upload date:
  • Size: 3.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for NonlinearTMM-1.3.11.tar.gz
Algorithm Hash digest
SHA256 401e4bcbdf38a915e77305617cc06920890f00aec5b62ee7c40310ddea635c70
MD5 a1ad8f9424d2d51bc60a28e0db13e364
BLAKE2b-256 7815ba8cd6848b73ff6b505d66ab7e412396180014dddf81ff31288c83632ab4

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f562688976be35b6373d0841d71d3445b06a43c67072ba1882b09d6fc377c391
MD5 8ed82eba53937e20ca8590c803326a60
BLAKE2b-256 5652afcf4e828d7c5ddac47425e5dd6c5b31836bc2577b82f5c65f9270e9b6ce

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13ee24c3cccaf2cb62d3deae45ff7f88c7e2633496aa0e3271e7518a83d4e819
MD5 5e4a68fa909d79e7e3b16aa6d27552e1
BLAKE2b-256 35b35e54809a36ac74ffd42f82d63f9279cfb4db62db8bb32db7901dbd5912fe

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9e65ae06e9ae78cf03e8668f3129f3aae0b487a1c1dc37b40e3fb5accd3ab3a7
MD5 2cf7bd9839ba3085c5d188328b937b02
BLAKE2b-256 df1b0c7bb9d6ba1372e0a51fcc407bcd1bfddb50175d1d48480ff4bbab994499

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff90a572bc96d156b5c0da0b7cd9012fba8d95d4961b11269f08391d29f75208
MD5 a734d09169d072b82a8318a22b5684bb
BLAKE2b-256 902225046565eaea9b364ab2702249cc52bf2c4c92e797ecfdbebd044f79b598

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9722dc1868117a74690561130ae88775a6b4598fddc5e69033cf3f89f3da7a0d
MD5 2284a28dff9c82bfaad144c86510398e
BLAKE2b-256 d86614efb088f9486b0c9b43a371ee61c2f10db5b3c0bf24329723047eeb3a39

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fbd3eeb41029525f7f34a014d812fdb3eedf8c552005d09c9a74f3ac76ae52f4
MD5 77a075e82316e8deb45373af9af84fdb
BLAKE2b-256 5a86fcc395dbfbf5a4ced8b572106ee471f8046e705758b4f0e732eb53d5e7d0

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b204f1156b0f7ab19b22d61f61e3e90857d4f979f6cd341d34230c7702270a50
MD5 f1741c250a7be1b250b5b57e4c8e25d3
BLAKE2b-256 8424795f5e2b24ffd44147fd90b5abda0606408c9e482db02b108c20dc5d8a55

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7afcc894d69fdfa1c43e0ea9cbe3b79b0700a90b04e232aeeebbd5d37fe7f30b
MD5 2aeb5fde769d91ef0f7390964c40cbc1
BLAKE2b-256 7a6e83a0c9b854570e4c3d3d2d53c6289a91af4eea59365f81c49a5741b22712

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 934b87948e93f3575b78cdb785c1345000f4866a95447a7ae79fdaa3e1d9c8ed
MD5 546dfb3a5e7c8c18a85fc14a96b5d180
BLAKE2b-256 1feea7e00e8eca1edd2af528b5e2c046d35d6d61e1770bfa84658fd799d6be4d

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13c53b62bc52812d31e2c043ad455e03da489fdca8789e766456de0bdec28133
MD5 09023c939063f143a1a6a4996793fd1e
BLAKE2b-256 67bc2411ff894f0fa8e5e22d7dc61156aa5d36e414b911b89a01d54593f3d384

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8f0000e8ec06048f49ecb809bc52429a82d0ed22bbe1ff23c92d061d80653b17
MD5 2f3133aa9010667323aea03ed5cc7144
BLAKE2b-256 0b1931198e30d67b414a88b0bd115bd8f92c19b26468ab25e4ff5b310121a789

See more details on using hashes here.

File details

Details for the file NonlinearTMM-1.3.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for NonlinearTMM-1.3.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03340f8ddb1da356ad77de693e460be79108994c57bfae1aec91062a54f0bcd3
MD5 b2782d85fccfe3249ef326db70f8554e
BLAKE2b-256 fb85f9e48c1aa840c1c14f780cc71d6e4676f4237d915756ee4e2dc54ea569f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page