Skip to main content

Remove image background

Project description

Norembg

Downloads License Hugging Face Spaces Streamlit App

Norembg is a tool to remove images background. This is a modified rembg version that uses onnxruntime-gpu.

example car-1 example car-1.out example car-2 example car-2.out example car-3 example car-3.out

example animal-1 example animal-1.out example animal-2 example animal-2.out example animal-3 example animal-3.out

example girl-1 example girl-1.out example girl-2 example girl-2.out example girl-3 example girl-3.out

example anime-girl-1 example anime-girl-1.out example anime-girl-2 example anime-girl-2.out example anime-girl-3 example anime-girl-3.out

If this project has helped you, please consider making a donation.

Sponsor

Unsplash PhotoRoom Remove Background API
https://photoroom.com/api

Fast and accurate background remover API

Requirements

python: >3.7, <3.13

Installation

CPU support:

pip install norembg # for library
pip install norembg[cli] # for library + cli

GPU support:

First of all, you need to check if your system supports the onnxruntime-gpu.

Go to https://onnxruntime.ai and check the installation matrix.

onnxruntime-installation-matrix

If yes, just run:

pip install norembg[gpu] # for library
pip install norembg[gpu,cli] # for library + cli

Usage as a cli

After the installation step you can use norembg just typing norembg in your terminal window.

The norembg command has 4 subcommands, one for each input type:

  • i for files
  • p for folders
  • s for http server
  • b for RGB24 pixel binary stream

You can get help about the main command using:

norembg --help

As well, about all the subcommands using:

norembg <COMMAND> --help

norembg i

Used when input and output are files.

Remove the background from a remote image

curl -s http://input.png | norembg i > output.png

Remove the background from a local file

norembg i path/to/input.png path/to/output.png

Remove the background specifying a model

norembg i -m u2netp path/to/input.png path/to/output.png

Remove the background returning only the mask

norembg i -om path/to/input.png path/to/output.png

Remove the background applying an alpha matting

norembg i -a path/to/input.png path/to/output.png

Passing extras parameters

SAM example

norembg i -m sam -x '{ "sam_prompt": [{"type": "point", "data": [724, 740], "label": 1}] }' examples/plants-1.jpg examples/plants-1.out.png
Custom model example

norembg i -m u2net_custom -x '{"model_path": "~/.u2net/u2net.onnx"}' path/to/input.png path/to/output.png

norembg p

Used when input and output are folders.

Remove the background from all images in a folder

norembg p path/to/input path/to/output

Same as before, but watching for new/changed files to process

norembg p -w path/to/input path/to/output

norembg s

Used to start http server.

norembg s --host 0.0.0.0 --port 7000 --log_level info

To see the complete endpoints documentation, go to: http://localhost:7000/api.

Remove the background from an image url

curl -s "http://localhost:7000/api/remove?url=http://input.png" -o output.png

Remove the background from an uploaded image

curl -s -F file=@/path/to/input.jpg "http://localhost:7000/api/remove"  -o output.png

norembg b

Process a sequence of RGB24 images from stdin. This is intended to be used with another program, such as FFMPEG, that outputs RGB24 pixel data to stdout, which is piped into the stdin of this program, although nothing prevents you from manually typing in images at stdin.

norembg b image_width image_height -o output_specifier

Arguments:

  • image_width : width of input image(s)
  • image_height : height of input image(s)
  • output_specifier: printf-style specifier for output filenames, for example if output-%03u.png, then output files will be named output-000.png, output-001.png, output-002.png, etc. Output files will be saved in PNG format regardless of the extension specified. You can omit it to write results to stdout.

Example usage with FFMPEG:

ffmpeg -i input.mp4 -ss 10 -an -f rawvideo -pix_fmt rgb24 pipe:1 | norembg b 1280 720 -o folder/output-%03u.png

The width and height values must match the dimension of output images from FFMPEG. Note for FFMPEG, the "-an -f rawvideo -pix_fmt rgb24 pipe:1" part is required for the whole thing to work.

Usage as a library

Input and output as bytes

from norembg import remove

input_path = 'input.png'
output_path = 'output.png'

with open(input_path, 'rb') as i:
    with open(output_path, 'wb') as o:
        input = i.read()
        output = remove(input)
        o.write(output)

Input and output as a PIL image

from norembg import remove
from PIL import Image

input_path = 'input.png'
output_path = 'output.png'

input = Image.open(input_path)
output = remove(input)
output.save(output_path)

Input and output as a numpy array

from norembg import remove
import cv2

input_path = 'input.png'
output_path = 'output.png'

input = cv2.imread(input_path)
output = remove(input)
cv2.imwrite(output_path, output)

How to iterate over files in a performatic way

from pathlib import Path
from norembg import remove, new_session

session = new_session()

for file in Path('path/to/folder').glob('*.png'):
    input_path = str(file)
    output_path = str(file.parent / (file.stem + ".out.png"))

    with open(input_path, 'rb') as i:
        with open(output_path, 'wb') as o:
            input = i.read()
            output = remove(input, session=session)
            o.write(output)

To see a full list of examples on how to use norembg, go to the examples page.

Usage as a docker

Just replace the norembg command for docker run danielgatis/norembg.

Try this:

docker run -v path/to/input:/norembg danielgatis/norembg i input.png path/to/output/output.png

Models

All models are downloaded and saved in the user home folder in the .u2net directory.

The available models are:

  • u2net (download, source): A pre-trained model for general use cases.
  • u2netp (download, source): A lightweight version of u2net model.
  • u2net_human_seg (download, source): A pre-trained model for human segmentation.
  • u2net_cloth_seg (download, source): A pre-trained model for Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body.
  • silueta (download, source): Same as u2net but the size is reduced to 43Mb.
  • isnet-general-use (download, source): A new pre-trained model for general use cases.
  • isnet-anime (download, source): A high-accuracy segmentation for anime character.
  • sam (download encoder, download decoder, source): A pre-trained model for any use cases.

How to train your own model

If You need more fine tuned models try this: https://github.com/danielgatis/norembg/issues/193#issuecomment-1055534289

Some video tutorials

References

FAQ

When will this library provide support for Python version 3.xx?

This library directly depends on the onnxruntime library. Therefore, we can only update the Python version when onnxruntime provides support for that specific version.

Buy me a coffee

Liked some of my work? Buy me a coffee (or more likely a beer)

Buy Me A Coffee

Star History

Star History Chart

License

Copyright (c) 2020-present Daniel Gatis

Licensed under MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

norembg-0.1.1.tar.gz (50.9 kB view details)

Uploaded Source

Built Distribution

norembg-0.1.1-py3-none-any.whl (39.1 kB view details)

Uploaded Python 3

File details

Details for the file norembg-0.1.1.tar.gz.

File metadata

  • Download URL: norembg-0.1.1.tar.gz
  • Upload date:
  • Size: 50.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.5

File hashes

Hashes for norembg-0.1.1.tar.gz
Algorithm Hash digest
SHA256 c51fb0451b586caa7203b67f813b6aad0d35201ea00040e85a2c77585d4c142f
MD5 bad67e0ddd2b1e6d26e76a1328d0da40
BLAKE2b-256 96564d293f6d2f76668fb0dbe6dd7d5639e7784682cf6d57937a6239312723e4

See more details on using hashes here.

File details

Details for the file norembg-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: norembg-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 39.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.5

File hashes

Hashes for norembg-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f1d09fc035846d1f36991c5eea16414229eea53c1d4a4425934f9be4a12a0073
MD5 68ea5430c3896aa9ab80fe708b8c0ef2
BLAKE2b-256 04933ec747f998cc5d9e2eabb249605acb16b837136c583b483ec41a0558ddc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page