A data normalization package
Project description
normscalers
A package for data normalization including the methods of MinMaxScaler, MaxAbsScaler, RobustScaler, StandardScaler and Normalizer in Scikit-learning, and DecimalScaler. The package can automatically detect the one-hot encoded variables and skip them to be normalized.
Install
pip install normscaler
use
(1) import one or more scalers by their names
- MinMaxScaler
- MaxAbsScaler
- RobustScaler
- StandardScaler
- Normalizer
- DecimalScaler
For example, import DecimalScaler by
from normascaler.scaler import DecimalScaler
(2) Use Decimal scaling method
X_train_scaled, X_train_scaled = DecimalScaler(X_train, X-test)
(3) Display the normalized X_train data in Pandas DataFrame
X_train_scaled
(4) Display the normalized X_test data in Pandas DataFrame
X_test_scaled
Documentation
Examples of a Jupyter note in GitHub: https://github.com/shoukewei/normscaler/blob/main/docs/examples.ipynb
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
normscaler-0.0.2.tar.gz
(4.0 kB
view hashes)
Built Distribution
Close
Hashes for normscaler-0.0.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 53b4a92fcec9568d50a04abbad1955e4627ef6a63ca2ebcadd28d9c9b68f247e |
|
MD5 | 80a7cbe7509d22b7eacf78fad3bd806d |
|
BLAKE2b-256 | 318b334c6164f4d96a54b30fc4b93305f66e7f5765445895a880b4ce14eef4e6 |