Skip to main content

A data normalization package

Project description

normscalers

A package for data normalization including the methods of MinMaxScaler, MaxAbsScaler, RobustScaler, StandardScaler and Normalizer in Scikit-learning, and DecimalScaler. The package can automatically detect the one-hot encoded variables and skip them to be normalized.

Install

pip install normscaler

use

(1) import one or more scalers by their names

  • MinMaxScaler
  • MaxAbsScaler
  • RobustScaler
  • StandardScaler
  • Normalizer
  • DecimalScaler

For example, import DecimalScaler by

from normascaler.scaler import DecimalScaler

(2) Use Decimal scaling method

X_train_scaled, X_train_scaled = DecimalScaler(X_train, X-test)

(3) Display the normalized X_train data in Pandas DataFrame

X_train_scaled

(4) Display the normalized X_test data in Pandas DataFrame

X_test_scaled

Documentation

Examples of a Jupyter note in GitHub: https://github.com/shoukewei/normscaler/blob/main/docs/examples.ipynb

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

normscaler-0.0.2.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

normscaler-0.0.2-py3-none-any.whl (3.6 kB view details)

Uploaded Python 3

File details

Details for the file normscaler-0.0.2.tar.gz.

File metadata

  • Download URL: normscaler-0.0.2.tar.gz
  • Upload date:
  • Size: 4.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for normscaler-0.0.2.tar.gz
Algorithm Hash digest
SHA256 1b944460838c636da0f32b78af21364d9d420a5cdcd1b4fc8d16bc74cd07817a
MD5 f1fc0d6696812c3ccca63f5e7918d41a
BLAKE2b-256 f5bd80b5698ee76c81f18fbbef3bab9feba89869536b4afca799eda3032bdd3f

See more details on using hashes here.

File details

Details for the file normscaler-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: normscaler-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 3.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for normscaler-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 53b4a92fcec9568d50a04abbad1955e4627ef6a63ca2ebcadd28d9c9b68f247e
MD5 80a7cbe7509d22b7eacf78fad3bd806d
BLAKE2b-256 318b334c6164f4d96a54b30fc4b93305f66e7f5765445895a880b4ce14eef4e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page