Skip to main content

Single cell type annotation guided by cell atlases, with freedom to be queer.

Project description

Build Status License: MIT ReleaseVersion FOSSA Status Documentation Status

Logo

northstar

Single cell type annotation guided by cell atlases, with freedom to be queer.

Brief description

northstar is a Python package to identify cell types within single cell transcriptomics datasets. northstar's superpower is that it learns from cell atlases but still allows queer cells to make their own cluster if they want to.

Also, northstar was heavily developed during Pride Month.

Atlas resources

Atlas averages

Curated averages and subsamples from several atlases: https://northstaratlas.github.io/atlas_landmarks/

If you want us to add you cell atlas, open an issue on: https://github.com/northstaratlas/atlas_landmarks/issues

Documentation

https://northstar.readthedocs.io

Installation

pip install northstar

To automatically download and use our online atlas collection at https://northstaratlas.github.io/atlas_averages/, you will need to call:

pip install 'northstar[atlas-fetcher]'

Dependencies

  • numpy
  • scipy
  • pandas
  • scikit-learn
  • anndata
  • python-igraph>=0.8.0
  • leidenalg>=0.8.0

It is recommended that you install python-igraph and leidenalg using pip. However, any installation (e.g. conda) that includes recent enough versions of both packages should work.

Optional deps to use our online atlases:

  • requests
  • loompy
  • scanpy
  • pynndescent (only useful if you use scanpy as well)

If you have scanpy installed, northstar will use it to speed up a few operations (PCA, graph construction). You can turn this off in two ways:

  1. Uninstall scanpy is you don't need it for anything else, or
  2. Set the environment variable NORTHSTAR_SKIP_SCANPY to anything except empty string, e.g. in a notebook:
import os
os.environ['NORTHSTAR_SKIP_SCANPY'] = 'yes'
import northstar as ns

(rest of the notebook/script)

Hot-swapping between the two modes (w or w/o scanpy) is not currently supported.

Usage

See the paper below or the documentation for detailed instructions and examples. The simplest way to use northstar is to classify a new single cell dataset using one of the available atlases, e.g. Darmanis_2015 on brain cells:

import northstar

# Choose an atlas
atlas_name = 'Darmanis_2015'

# Get a gene expression matrix of the new dataset (here a
# random matrix for simplicity)
N = 200
L = 50
new_dataset = pd.DataFrame(
    data=np.random.rand(L, N).astype(np.float32),
    index=<gene_list>,
    columns=['cell_'+str(i+1) for i in range(N)],
    )

# Initialize northstar classes
model = northstar.Averages(
        atlas='Darmanis_2015',
        n_neighbors=5,
        n_pcs=10,
        )

# Run the classifier
model.fit(new_dataset)

# Get the cluster memberships for the new cells
membership = model.membership

Citation

If you use this software please cite the following paper:

Fabio Zanini*, Bojk A. Berghuis*, Robert C. Jones, Benedetta Nicolis di Robilant, Rachel Yuan Nong, Jeffrey Norton, Michael F. Clarke, Stephen R. Quake. Northstar enables automatic classification of known and novel cell types from tumor samples. Scientific Reports 10, Article number: 15251 (2020), DOI: https://doi.org/10.1038/s41598-020-71805-1

License

northstar is released under the MIT license.

NOTE: The module leidenalg to perform graph-based clstering is released under the GLP3 license. You agree with those licensing terms if you use leidenalg within northstar.

FOSSA Status

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

northstar-0.6.0.tar.gz (28.1 kB view details)

Uploaded Source

File details

Details for the file northstar-0.6.0.tar.gz.

File metadata

  • Download URL: northstar-0.6.0.tar.gz
  • Upload date:
  • Size: 28.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for northstar-0.6.0.tar.gz
Algorithm Hash digest
SHA256 3e200bdd48fd3c0a99aa09a2af9fba5476f8212f2eeb2ed4666a5d03e91b89f2
MD5 eb9ea0799fa86940a861b31816fb7d9a
BLAKE2b-256 fb385d69a09d447561f1d81323fe04e9c34a239fd7c793edd379aaf34dfb1643

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page