Skip to main content

No project description provided

Project description

nose-knows is a nose plugin for figuring out which unit tests you should run after modifying code. It works by tracing your code while you run unit tests, and creating an output file that can be used later.

Installing

You can install nose-knows through pip or easy-install:

pip install nose-knows

Or you can download the latest development version, which may contain new features.

Using nose-knows

nose-knows can be invoked in either input or output mode. In output mode (--knows-out) it will generate a .knows file that contains the mapping from a file in your code tree to the set of unit tests that run it. In input mode, it uses the .knows file to selectively run unit tests based on the files you pass in. Note: here, $BASE_DIR is the name of the base project directory, not the (direct / relative) path to it. It is used to figure out how to rename the file names in the output file to make it more portable.

Creating a .knows file:

eyal-01575:src eyal$ nosetests --with-knows --knows-dir=$BASE_DIR --knows-out
.....................................................................
----------------------------------------------------------------------
Ran 62 tests in 0.444s

OK

The .knows file now contains the following:

warehouse/src/load_data/sql_utils/checkpoints.py:
    src.tests.test_load_data_statements:TestSQLStatement.test_finalize
    src.tests.test_load_data_checkpoints:TestCheckpoints.test_checkpoint_finalize_with_delete
    src.tests.test_load_data_checkpoints:TestCheckpoints.test_checkpoint_finalize
    src.tests.test_load_data_checkpoints:TestCheckpoints.test_checkpoint_with_previous_checkin
    src.tests.test_load_data_checkpoints:TestCheckpoints.test_checkpoint
    src.tests.test_load_data_statements:TestSQLStatement.test_to_sql_import
    src.tests.test_load_data_statements:TestSQLStatement.test_to_sql_schema_update

You can now run nose-knows in input mode, passing in load_data/sql_utils/checkpoints.py:

eyal-01575:src eyal$ nosetests --with-knows --knows-dir=$BASE_DIR load_data/sql_utils/checkpoints.py
.......
----------------------------------------------------------------------
Ran 7 tests in 0.003s

OK

There is also (experimental at this point) support for py.test. You can generate your .knows file via:

eyal-01575:src eyal$ py.test --with-knows --knows-dir=$BASE_DIR --knows-out
===================== test session starts ======================
platform darwin -- Python 2.7.1 -- pytest-2.3.4
plugins: nose-knows
collected 62 items

tests/test_load_data_checkpoints.py ....
tests/test_load_data_from_mysql.py ..
tests/test_load_data_statements.py .....
tests/test_process_data_denormalize.py ........
tests/test_process_data_mapping.py .....
tests/test_transform_data_daemon.py .
tests/test_transform_data_table_follower.py .................
tests/test_transformers/test_avg_data.py ..
tests/test_transformers/test_count.py ...
tests/test_transformers/test_join.py ....
tests/test_transformers/test_json_data.py .....
tests/test_transformers/test_min_data.py ..
tests/test_transformers/test_std_data.py ..
tests/test_transformers/test_sum_data.py ..

================== 62 passed in 2.18 seconds ===================

And selectively run specific unit tests like so:

eyal-01575:src eyal$ py.test --with-knows --knows-dir=$BASE_DIR load_data/sql_utils/checkpoints.py
===================== test session starts ======================
platform darwin -- Python 2.7.1 -- pytest-2.3.4
plugins: nose-knows
collected 62 items

tests/test_load_data_checkpoints.py ....
tests/test_load_data_statements.py ...

=================== 7 passed in 0.30 seconds ===================

The best practice here is to have a system like Jenkins run the unit test suite once in a while to create this map (we have it running daily), and then creating a bash function/script to download the knows output file from Jenkins and run it against the set of changed files from a commit. Ours looks like:

function grab_latest_knows_output() {
    NOW=`date +%s`
    if [ ! -f $KNOWS_FILE_TMP ] ; then
        curl --compressed $KNOWS_FILE_URL > $KNOWS_FILE_TMP
    else
        KNOWS_FILE_AGE=`stat -c %Y $KNOWS_FILE_TMP`
        if [ `expr $NOW - $KNOWS_FILE_AGE` -gt "86400" ] ; then
            curl --compressed $KNOWS_FILE_URL > $KNOWS_FILE_TMP
        else
            echo "Using latest knows output file."
        fi
    fi
}

function test_changed() {
    grab_latest_knows_output
    nosetests $KNOWS_FLAGS `git diff --name-only --cached origin | xargs`
}

function run_tests_for() {
    grab_latest_knows_output
    nosetests $KNOWS_FLAGS $@
}

License

nose-knows is copyright 2013 Eventbrite and Contributors, and is made available under BSD-style license; see LICENSE for details.

News

0.1.2

Adding support for non-unittest based tests with nose.

0.1.1

Minor bug fix to make the nose plugin more resilient to bad test names.

0.1

Release date: April 2nd, 2012

  • Initial write of nose-knows, including support for nose and experimental support for py.test

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nose-knows-0.2.tar.gz (7.0 kB view details)

Uploaded Source

Built Distribution

nose_knows-0.2-py2.py3-none-any.whl (9.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file nose-knows-0.2.tar.gz.

File metadata

  • Download URL: nose-knows-0.2.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nose-knows-0.2.tar.gz
Algorithm Hash digest
SHA256 3ac979adb044ffc8b0a33a357c34dc255ed91141857be5c1755906880b8a1b75
MD5 76e9130354d70f3a946d00a365d68fe7
BLAKE2b-256 4499d2dfbd0ec485069b54cb420fd1f1e57c918818d675600000171cf505fdd1

See more details on using hashes here.

File details

Details for the file nose_knows-0.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for nose_knows-0.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 caaaa2138d0d7e9c1a17f19a7479dd9507749a69d91aaeec83569c09386d9cea
MD5 b92a10caf848ffee70db91d7981ab6fd
BLAKE2b-256 e67250246fec1c2db153fc67760eed0749d0ffc7ebb91065e611acc3c016c631

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page