Skip to main content

NoSMPL: Optimized common used SMPL operation.

Project description

NoSMPL

An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outputs a high-dimensional 3D mesh verts.

However, SMPL codes and models are so messy out there, they have a lot of codes do calculation, some of them can not be easily deployed or accerlarated. So we have nosmpl here, it provides:

  • build on smplx, but with onnx support;
  • can be inference via onnx;
  • we also demantrated some using scenarios infer with nosmpl but without any model, only onnx.

This packages provides:

  • Highly optimized pytorch acceleration with FP16 infer enabled;
  • Supported ONNX export and infer via ort, so that it might able used into TensorRT or OpenVINO on cpu;
  • Support STAR, next generation of SMPL.
  • Provide commonly used geoemtry built-in support without torchgeometry or kornia.

STAR model download from: https://star.is.tue.mpg.de

SMPL ONNX Model Downloads

I have exported 2 models, include SMPL-H and SMPL, which can cover most using scenarios:

They can also be found at github release.

For usage, you can take examples like examples/demo_smplh_onnx.py.

Quick Start

Now you can using nosmpl to visualize smpl with just few line of codes without download any SMPL file:

from nosmpl.smpl_onnx import SMPLOnnxRuntime
import numpy as np


smpl = SMPLOnnxRuntime()

body = np.random.randn(1, 23, 3).astype(np.float32)
global_orient = np.random.randn(1, 1, 3).astype(np.float32)
outputs = smpl.forward(body, global_orient)
print(outputs)
# you can visualize the verts with Open3D now.

So your predicted 3d pose such as SPIN, HMR, PARE etc, grap your model ouput, and through this nosmpl func, you will get your SMPL vertices!

Updates

  • 2023.02.28: An SMPL-H ONNX model released! Now You can using ONNXRuntime to get a 3D SMPL Mesh from a pose!

  • 2022.05.16: Now added human_prior inside nosmpl, you don't need install that lib anymore, or install torchgeometry either:

    from nosmpl.vpose.tools.model_loader import load_vposer
    self.vposer, _ = load_vposer(VPOSER_PATH, vp_model="snapshot")
    

    then you can load vpose to use.

  • 2022.05.10: Add BHV reader, you can now read and write bvh file:

    from nosmpl.parsers import bvh_io
    import sys
    
    
    animation = bvh_io.load(sys.argv[1])
    print(animation.names)
    print(animation.frametime)
    print(animation.parent)
    print(animation.offsets)
    print(animation.shape)
    
  • 2022.05.07: Added a visualization for Human36m GT, you can using like this to visualize h36m data now:

    import nosmpl.datasets.h36m_data_utils as data_utils
    from nosmpl.datasets.h36m_vis import h36m_vis_on_gt_file
    import sys
    
    if __name__ == "__main__":
        h36m_vis_on_gt_file(sys.argv[1])
    

    Just send a h36m txt annotation file, and you can see the animation result. Also, you can using from nosmpl.datasets.h36m_vis import h36m_load_gt_3d_data to load 3d data in 3D space.

  • 2022.03.03: I add some box_transform code into nosmpl, no we can get box_scale info when recover cropped img predicted 3d vertices back to original image. This is helpful when you project 3d vertices back to original image when using realrender. the usage like:

    from nosmpl.box_trans import get_box_scale_info, convert_vertices_to_ori_img
    box_scale_o2n, box_topleft, _ = get_box_scale_info(img, bboxes)
    frame_verts = convert_vertices_to_ori_img(
              frame_verts, s, t, box_scale_o2n, box_topleft
          )
    
  • 2022.03.05: More to go.

Features

The most exciting feature in nosmpl is you don't need download any SMPL files anymore, you just need to download my exported SMPL.onnx or SMPLH.onnx, then you can using numpy to generate a Mesh!!!

nosmpl also provided a script to visualize it~!

import onnxruntime as rt
import torch
import numpy as np
from nosmpl.vis.vis_o3d import vis_mesh_o3d


def gen():
    sess = rt.InferenceSession("smplh_sim.onnx")

    for i in range(5):
        body_pose = (
            torch.randn([1, 63], dtype=torch.float32).clamp(0, 0.4).cpu().numpy()
        )
        left_hand_pose = (
            torch.randn([1, 6], dtype=torch.float32).clamp(0, 0.4).cpu().numpy()
        )
        right_hand_pose = (
            torch.randn([1, 6], dtype=torch.float32).clamp(0, 0.4).cpu().numpy()
        )

        outputs = sess.run(
            None, {"body": body_pose, "lhand": left_hand_pose, "rhand": right_hand_pose}
        )

        vertices, joints, faces = outputs
        vertices = vertices[0].squeeze()
        joints = joints[0].squeeze()

        faces = faces.astype(np.int32)
        vis_mesh_o3d(vertices, faces)


if __name__ == "__main__":
    gen()

You will see a mesh with your pose, generated:

As you can see, we are using a single ONNX model, by some randome poses, you can generated a visualized mesh.

this is useful when you wanna test your predict pose is right or not!

If you using this in your project, your code will be decrease 190%, if it helps, consider cite nosmpl in your project!

More details you can join our Metaverse Wechat group for discussion! QQ join link:

Examples

an example to call nosmlp:

from nosmpl.smpl import SMPL

smpl = SMPL(smplModelPath, extra_regressor='extra_data/body_module/data_from_spin/J_regressor_extra.npy').to(device)

# get your betas and rotmat
pred_vertices, pred_joints_3d, faces = smpl(
                    pred_betas, pred_rotmat
                )

# note that we returned faces in SMPL model, you can use for visualization
# joints3d will add extra joints if you have extra_regressor like in SPIN or VIBE

The output shape of onnx model like:

                    basicModel_neutral_lbs_10_207_0_v1.0.0.onnx Detail
╭───────────────┬────────────────────────────┬──────────────────────────┬────────────────╮
│ Name          │ Shape                      │ Input/Output             │ Dtype          │
├───────────────┼────────────────────────────┼──────────────────────────┼────────────────┤
│ 0             │ [1, 10]                    │ input                    │ float32        │
│ 1             │ [1, 24, 3, 3]              │ input                    │ float32        │
│ verts         │ [-1, -1, -1]               │ output                   │ float32        │
│ joints        │ [-1, -1, -1]               │ output                   │ float32        │
│ faces         │ [13776, 3]                 │ output                   │ int32          │
╰───────────────┴────────────────────────────┴──────────────────────────┴────────────────╯
                             Table generated by onnxexplorer

Notes

  1. About quaternion

the aa2quat function, will converts quaternion in wxyz as default order. This is different from scipy. It's consistent as mostly 3d software such as Blender or UE.

Results

Some pipelines build with nosmpl support.

Copyrights

Copyrights belongs to Copyright (C) 2020 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) and Lucas Jin

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nosmpl-0.1.4.tar.gz (67.7 kB view details)

Uploaded Source

File details

Details for the file nosmpl-0.1.4.tar.gz.

File metadata

  • Download URL: nosmpl-0.1.4.tar.gz
  • Upload date:
  • Size: 67.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for nosmpl-0.1.4.tar.gz
Algorithm Hash digest
SHA256 3c2d6e4d57056f5c63975d8835b63355e93bebb08a4bf09166d4a383ac9a9105
MD5 f71a2c48f9170616e33af25a9958c5f4
BLAKE2b-256 af5ab036ef277548d5a7ca5b693b0f8ad6e362c02d93c346f8dc0039a18039f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page