Skip to main content

A tool for orchestrating and executing Jupyter notebooks, enabling seamless parameter passing between notebooks.

Project description

notebook-orchestration-and-execution-manager

Orchestrate Jupyter notebooks by passing parameters dynamically between them. This solution enables seamless execution, where the output of one notebook becomes the input for the next. Includes automated execution, parameter injection, logging, and output management for streamlined workflows.

Notebook Execution and Variable Extraction

This project provides a Python class and workflow to manage the execution of Jupyter notebooks with parameters, extract variables and their values from executed notebooks, and display the results in a structured format.

Features

  • Execute Jupyter Notebooks: Run Jupyter notebooks with specified parameters using papermill.
  • Dynamic Parameter Passing: Pass custom parameters to notebooks during execution.
  • Variable Extraction: Extract variable data (name, operation, and value) from executed notebook cells.
  • Logging: Track execution steps with detailed logs.
  • Directory Management: Automatically manage output directories for processed notebooks.

Requirements

  • Python 3.6+
  • Libraries: os, papermill, logging, ast, IPython

Install dependencies via pip:

pip install notebook-orchestration-and-execution-manager

Usage

1. Initialize the NotebookOrchestationExecutionManager

Create an instance of NotebookOrchestationExecutionManager, specifying the directory for processed notebooks.

from notebook_orchestation_execution_manager import NotebookOrchestationExecutionManager

processor = NotebookOrchestationExecutionManager(processed_directory="./processed_notebook")

1.1 Parameters Definition

The recommended practice is to define parameters in the first cell of the notebook. This ensures a clear structure, makes them easy to locate, and provides a centralized configuration that can be used throughout the notebook's execution.

Parameters can be defined in a Markdown, Raw, or Code cell, or even without explicitly defining a cell for this purpose. Parameter injection will automatically take place above the first code cell in the notebook. This provides greater flexibility when working with parameterization tools like Papermill or automating notebook execution in configurable environments.

In Mardown Cell

Execute Notebooks

In Code Cell

Execute Notebooks

No Definition Cell

Execute Notebooks

1.2 Parameters Injection

Execute Notebooks

Execute Notebooks

Execute Notebooks

2. Define Notebooks and Parameters

Provide a list of notebooks with input paths, output paths, and parameter dictionaries.

Notebooks

notebooks_with_parameters = [
    ("./sample_notebooks/1_Add.ipynb", "./processed_notebook/add_executed.ipynb", {"params": [10, 5, 7]}),
    ("./sample_notebooks/4_Divide.ipynb", "./processed_notebook/divide_executed.ipynb", {"x": 20, "y": 0}),
    ("./sample_notebooks/2_Subtract.ipynb", "./processed_notebook/subtract_executed.ipynb", {"x": 10, "y": 3}),
    ("./sample_notebooks/3_Multiply.ipynb", "./processed_notebook/multiply_executed.ipynb", {"inject_values": {"x": [2, 3], "y": [4, 5]}}),
    ("./sample_notebooks/5_No_parameters.ipynb", "./processed_notebook/no_parameters_executed.ipynb", {"inject_values": {"x": [2, 3], "y": [4, 5]}}),
]

3. Execute Notebooks

Run each notebook with parameters and save the results.

notebook_execution_results = []
for input_path, output_path, params in notebooks_with_parameters:
    notebook_results = processor.run_notebook_with_parameters(input_path, output_path, params)
    notebook_execution_results.append(notebook_results)

Execute Notebooks

4. Extract Variables from Notebooks

Extract variable data and display it in a structured format.

for notebook_result in notebook_execution_results:
    if notebook_result:
        extracted_data = processor.extract_variable_data_from_notebook_cells(notebook_result)
        processor.display_notebook_variables_and_values_extracted_from_notebook(extracted_data)

Extract Variables


Code Breakdown

1. NotebookOrchestationExecutionManager Class

Handles the execution of notebooks, directory creation, and variable extraction.

Methods

  • create_directory_if_not_exists(directory: str): Ensures the specified directory exists.
  • run_notebook_with_parameters(notebook_input_path: str, notebook_output_path: str, params: dict): Executes a Jupyter notebook with parameters.
  • extract_variable_data_from_notebook_cells(notebook_data: dict): Extracts variable data from notebook cells.
  • display_notebook_variables_and_values_extracted_from_notebook(extracted_variables_data_from_notebook: dict): Displays extracted variable data in logs.

Example Workflow

Input Notebook

  • File: 1_Add.ipynb
  • Parameters: {"params": [10, 5, 7]}

Output

  • File: ./processed_notebook/add_executed.ipynb
  • Logs: Execution details and extracted variables.

Logging

Logs include:

  • Notebook execution status.
  • Variable extraction details.
  • Metadata from executed notebooks.

License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distributions

File details

Details for the file notebook-orchestration-and-execution-manager-0.2.13.tar.gz.

File metadata

File hashes

Hashes for notebook-orchestration-and-execution-manager-0.2.13.tar.gz
Algorithm Hash digest
SHA256 cabcd9a1edf46b9559f83df28e5b8919a0069c391b9a0de5a2c1dfc45b7dd665
MD5 38c01bde47345bbb43dfa88941d93f7a
BLAKE2b-256 ad2c55266777aef772328121d3a8291c3e2ab643fa650716a0a9645ea0a12e0c

See more details on using hashes here.

File details

Details for the file notebook_orchestration_and_execution_manager-0.2.13.0-py3-none-any.whl.

File metadata

File hashes

Hashes for notebook_orchestration_and_execution_manager-0.2.13.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e8a0caccd772bddc823dafc87cf95f367cc463035fec810562175adf22a39afa
MD5 f9d91ae9a8d3e133e7bc27e94d57a37f
BLAKE2b-256 ef8eaed60eca326144ae6eb84f5d4cb33a2ac75df152b8748670785858db9d9b

See more details on using hashes here.

File details

Details for the file notebook_orchestration_and_execution_manager-0.2.13-py3-none-any.whl.

File metadata

File hashes

Hashes for notebook_orchestration_and_execution_manager-0.2.13-py3-none-any.whl
Algorithm Hash digest
SHA256 5644a053d3c1b8c8a9379f46680fd5e516c993ae495d6d0386fb6860566b57ab
MD5 3305c180b530ec45097b2b70d380edab
BLAKE2b-256 73bdbcdfd12e02dad3124476867c4e0541c26aa8218e36f94479cc635d05c93f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page