Skip to main content

A tool for orchestrating and executing Jupyter notebooks, enabling seamless parameter passing between notebooks.

Project description

notebook-orchestration-and-execution-manager

Orchestrate Jupyter notebooks by passing parameters dynamically between them. This solution enables seamless execution, where the output of one notebook becomes the input for the next. Includes automated execution, parameter injection, logging, and output management for streamlined workflows.

Notebook Execution and Variable Extraction

This project provides a Python class and workflow to manage the execution of Jupyter notebooks with parameters, extract variables and their values from executed notebooks, and display the results in a structured format.

Features

  • Execute Jupyter Notebooks: Run Jupyter notebooks with specified parameters using papermill.
  • Dynamic Parameter Passing: Pass custom parameters to notebooks during execution.
  • Variable Extraction: Extract variable data (name, operation, and value) from executed notebook cells.
  • Logging: Track execution steps with detailed logs.
  • Directory Management: Automatically manage output directories for processed notebooks.

Requirements

  • Python 3.6+
  • Libraries: os, papermill, logging, ast, IPython

Install dependencies via pip:

pip install notebook-orchestration-and-execution-manager

Usage

1. Initialize the NotebookOrchestationExecutionManager

Create an instance of NotebookOrchestationExecutionManager, specifying the directory for processed notebooks.

from notebook_orchestation_execution_manager import NotebookOrchestationExecutionManager

processor = NotebookOrchestationExecutionManager(processed_directory="./processed_notebook")

1.1 Parameters Definition

How to Configure a Cell in JupyterLab to Receive Parameters

  1. Select the cell you want to configure to receive parameters.

  2. Click on the gear icon located on the right panel in JupyterLab. This will open the cell metadata editor.

  3. Add a new tag:

    • In the metadata editor, locate or create a field named tags.
    • Add a new tag called parameters.
  4. Save the changes and ensure the parameters tag has been added correctly.

The recommended practice is to define parameters in the first cell of the notebook. This ensures a clear structure, makes them easy to locate, and provides a centralized configuration that can be used throughout the notebook's execution.

Parameters can be defined in a Markdown, Raw, or Code cell, or even without explicitly defining a cell for this purpose. Parameter injection will automatically take place above the first code cell in the notebook. This provides greater flexibility when working with parameterization tools like Papermill or automating notebook execution in configurable environments.

In Mardown Cell

Execute Notebooks

In Code Cell

Execute Notebooks

No Definition Cell

Execute Notebooks

1.2 Parameters Injection

Execute Notebooks

Execute Notebooks

Execute Notebooks

2. Define Notebooks and Parameters

Provide a list of notebooks with input paths, output paths, and parameter dictionaries.

Notebooks

notebooks_with_parameters = [
    (f"{original_notebooks_path}/1_Add.ipynb", f"./{processed_notebook_file_path}/add_executed.ipynb", {"params": [10, 5, 7]}),
    (f"{original_notebooks_path}/2_Subtract.ipynb", f"./{processed_notebook_file_path}/subtract_executed.ipynb", {"x": 10, "y": 3}),
    (f"{original_notebooks_path}/3_Divide.ipynb", f"./{processed_notebook_file_path}/divide_executed.ipynb", {"x": 20, "y": 0}),
    (f"{original_notebooks_path}/4_No_parameters.ipynb", f"./{processed_notebook_file_path}/no_parameters_executed.ipynb", {"inject_values": {"x": [2, 3], "y": [4, 5]}}),
    (f"{original_notebooks_path}/5_Multiply.ipynb", f"./{processed_notebook_file_path}/multiply_executed.ipynb", {"inject_values": {"x": [2, 3], "y": [4, 5]}}),
]

3. Execute Notebooks

Run each notebook with parameters and save the results.

notebook_execution_results = []
for input_path, output_path, params in notebooks_with_parameters:
    notebook_results = processor.run_notebook_with_parameters(input_path, output_path, params)
    notebook_execution_results.append(notebook_results)

Execute Notebooks

4. Extract Variables from Notebooks

Extract variable data and display it in a structured format.

for notebook_result in notebook_execution_results:
    if notebook_result:
        extracted_data = processor.extract_variable_data_from_notebook_cells(notebook_result)
        processor.display_notebook_variables_and_values_extracted_from_notebook(extracted_data)

Extract Variables


Code Breakdown

1. NotebookOrchestationExecutionManager Class

Handles the execution of notebooks, directory creation, and variable extraction.

Methods

  • create_directory_if_not_exists(directory: str): Ensures the specified directory exists.
  • run_notebook_with_parameters(notebook_input_path: str, notebook_output_path: str, params: dict): Executes a Jupyter notebook with parameters.
  • extract_variable_data_from_notebook_cells(notebook_data: dict): Extracts variable data from notebook cells.
  • display_notebook_variables_and_values_extracted_from_notebook(extracted_variables_data_from_notebook: dict): Displays extracted variable data in logs.

Example Workflow

Input Notebook

  • File: 1_Add.ipynb
  • Parameters: {"params": [10, 5, 7]}

Output

  • File: ./processed_notebook/add_executed.ipynb
  • Logs: Execution details and extracted variables.

Logging

Logs include:

  • Notebook execution status.
  • Variable extraction details.
  • Metadata from executed notebooks.

License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file notebook-orchestration-and-execution-manager-0.2.27.tar.gz.

File metadata

File hashes

Hashes for notebook-orchestration-and-execution-manager-0.2.27.tar.gz
Algorithm Hash digest
SHA256 e65cbffd02378a4698fb4b4c604feb666e54763813dcf3697d782741a7b0c5bf
MD5 3b2f4493a0aa99697974c812dfdec52c
BLAKE2b-256 8fd56ee06289f39a0837050ce99a47275d4aa89b5bae922a85ce6f1fea401683

See more details on using hashes here.

File details

Details for the file notebook_orchestration_and_execution_manager-0.2.27-py3-none-any.whl.

File metadata

File hashes

Hashes for notebook_orchestration_and_execution_manager-0.2.27-py3-none-any.whl
Algorithm Hash digest
SHA256 6dd153fcf28d614040b07e14a00eb32ab9f09b135a73e4b035cbd618eba27b97
MD5 135d79e853ccbcc6ce27ae56ec051f6c
BLAKE2b-256 0e606573b148547ca86a989426f62f2d52c6ade60a7c07872b1ac34008a0c9b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page