Easier object-oriented calculations for numerical solvers.
Project description
npsolve
The npsolve package is a small, simple package built on numpy to make it easy to use object-oriented classes and methods for the calculation step for numerical solvers.
Many numerical solvers (like those in scipy) provide candidate solutions as a numpy ndarray. They often also require a numpy ndarray as a return value (e.g. an array of derivatives) during the solution. These requirements can make it difficult to use an object oriented approach to performing the calculations. Usually, we end up with script-like code that looses many of the benefits of object-oriented programming.
The npsolve framework links a solver with multiple classes that handle the calculations for each step in the algorithm. It allows different parts of the calculations to be encapsulated and polymorphic, and makes the code much easier to modify and maintain.
Advantages:
- No-fuss management of variables and their initial conditions
- Updated state automatically shared with all objects
- Calls between classes possible using dependency injection
- Optional caching methods prevent redundant calculations
- Introduces very little overhead in calculation time
Basic usage tutorial
Let's use npsolve to do some integration through time, like you would to solve an ODE. Instead of equations, though, we're using class methods. The code for all the tutorials is available in the repository under 'examples'.
First, setup some classes that you want to do calculations with. We do this
by using the add_var
method to setup variables and their initial values.
import numpy as np
import npsolve
class Component1(npsolve.Partial):
def __init__(self):
super().__init__() # Don't forget to call this!
self.add_var("position1", init=0.1)
self.add_var("velocity1", init=0.3)
class Component2(npsolve.Partial):
def __init__(self):
super().__init__() # Don't forget to call this!
self.add_var("component2_value", init=-0.1)
All the variables are made available to all Partial instances automatically
through their state
attribute. It's a dictionary. The add_var
method
sets initial values into the instance's state dictionary. Later, the Solver
will ultimately replace the state
attribute with a new dictionary that
contains all variables from all the Partial classes.
Next, we'll tell these classes how to do some calculations during each time
step. The step
method is called automatically and expects a dictionary of
return values (e.g. derivatives). We'll use that one here. The state
dictionary is given again as the first argument, but we're going to use the
internal state
attribute instead. So, we'll add some more methods:
class Component1(npsolve.Partial):
def __init__(self):
super().__init__() # Don't forget to call this!
self.add_var("position1", init=0.1)
self.add_var("velocity1", init=0.3)
def step(self, state_dct, t, *args):
"""Called by the solver at each time step
Calculate acceleration based on the net component2_value.
"""
acceleration = 1.0 * self.state["component2_value"]
derivatives = {
"position1": self.state["velocity1"],
"velocity1": acceleration,
}
return derivatives
class Component2(npsolve.Partial):
def __init__(self):
super().__init__() # Don't forget to call this!
self.add_var("component2_value", init=-0.1)
def calculate(self, t):
"""Some arbitrary calculations based on current time t
and the position at that time calculated in Component1.
This returns a derivative for variable 'c'
"""
dc = 1.0 * np.cos(2 * t) * self.state["position1"]
derivatives = {"component2_value": dc}
return derivatives
def step(self, state_dct, t, *args):
"""Called by the solver at each time step"""
return self.calculate(t)
Now, we'll set up the solver. For this example, we'll use the odeint solver from Scipy (npsolve has a more convenient Solver class). Here's what it looks like:
from scipy.integrate import odeint
class Solver(npsolve.Solver):
def solve(self, t_end=10):
self.npsolve_init() # Initialise
self.t_vec = np.linspace(0, t_end, 1001)
result = odeint(self.step, self.npsolve_initial_values, self.t_vec)
return result
Let's look at what's going on in the solve
method. By default, Solvers
have a step
method that's ready to use. (They also have a one_way_step
method that doesn't expect return values from the Partials, and a tstep
method that expects a time value as the first argument.) After initialisation,
the initial values set by the Partial classes are captured in the
npsolve_initial_values
attribute. By default, the Solver's step
method
returns a vector of all the return values, the same size as the Solver's
npsolve_initial_values
array. So most of the work is done for us here
already.
Note here that we don't need to know anything about the model or the elements in the model. This allows us to decouple the model and Partials from the solver. We can pass in different models, or pass models to different solvers. We can make models with different components. It's flexible and easy to maintain!
To run, we just have to instantiate the Solver and Partial instances,
then pass a list or dictionary of the Partial instances to the
connect_partials
method of the Solver. They'll link up automatically.
Or, you can link them individually using the connect_partial
method.
def run():
solver = Solver()
partials = [Component1(), Component2()]
solver.connect_partials(partials)
res = solver.solve()
return res, solver
Let's set up a plot to see the results. Use the npsolve_slices
attribute of
the Solver to get the right columns. (The npsolve.Solver class makes accessing
results more convenient by splitting them into a dictionary.)
import matplotlib.pyplot as plt
def plot(res, solver):
s = solver
slices = s.npsolve_slices
plt.figure()
plt.plot(s.t_vec, res[:, slices["position1"]], label="position1")
plt.plot(s.t_vec, res[:, slices["velocity1"]], label="velocity1")
plt.plot(
s.t_vec, res[:, slices["component2_value"]], label="component2_value"
)
plt.legend()
Run it and see what happens!
res, s = run()
plot(res, s)
Calls between partials
To facilitate calls between components, use dependency injection. Let's illustrate by using methods instead of instead of using the values in the state dictionary like we did above. So, let's modify our two classes like this:
class Component1(npsolve.Partial):
def __init__(self):
super().__init__() # Don't forget to call this!
self.add_var("position1", init=0.1)
self.add_var("velocity1", init=0.3)
def get_position(self):
"""Returns a value
In this example, it is just a state variable, but it could be much
more complex.
"""
return self.state['position1']
def connect(self, component2, reverse=True):
"""Connect with a Component2 instance"""
self._component2 = component2
if reverse:
component2.connect(self, reverse=False)
def step(self, state_dct, t, *args):
"""Called by the solver at each time step
Calculate acceleration based on the net component2_value.
"""
acceleration = 1.0 * self._component2.get_value()
derivatives = {
"position1": self.state["velocity1"],
"velocity1": acceleration,
}
return derivatives
class Component2(npsolve.Partial):
def __init__(self):
super().__init__() # Don't forget to call this!
self.add_var("component2_value", init=-0.1)
def get_value(self):
"""Returns a value
In this example, it is just a state variable, but it could be much
more complex.
"""
return self.state['component2_value']
def connect(self, component1, reverse=True):
"""Connect with a Component1 instance"""
self._component1 = component1
if reverse:
component1.connect(self, reverse=False)
def calculate(self, t):
"""Some arbitrary calculations based on current time t
and the position at that time calculated in Component1.
This returns a derivative for variable 'c'
"""
dc = 1.0 * np.cos(2 * t) * self._component1.get_position()
derivatives = {"component2_value": dc}
return derivatives
def step(self, state_dct, t, *args):
"""Called by the solver at each time step"""
return self.calculate(t)
Before we run the solver, we just need to inject the dependency by calling the 'connect' methods we've created. So, now our run function becomes:
def run():
solver = Solver()
component1 = Component1()
component2 = Component2()
component1.connect(component2) # Inject the dependency
component2.connect(component1) # Inject the dependency
partials = [component1, component2]
solver.connect_partials(partials)
res = solver.solve()
return res, solver
Nested Partial instances
You can also nest Partial instances. Under the hood, connect_partials
passes
the Solver to the connect_solver
method of each Partial instance. Just
overwrite the parent Partial instance's connect_solver
method to pass
the solver instance on to the connect_solver
method on the children.
Tutorials
Check out the tutorials in the examples folder to learn the basics and learn about some more advanced features like the Solver class, the Timeseries class, caching, and logging extra values.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file npsolve-0.2.0.tar.gz
.
File metadata
- Download URL: npsolve-0.2.0.tar.gz
- Upload date:
- Size: 23.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c7042d0fe446e8bd4c77eb347e474fc6077a326b1178c0781ee81648873f497c |
|
MD5 | c6d698700c133aa5e16d0fcca74ace63 |
|
BLAKE2b-256 | 8062737835398abda4846e4922f02571d1461c496022ce0eed99719e97987ae8 |