Simple data structures that augments the numpy library
Project description
Numpy Structures
Simple data structures that augments the numpy library
Free software: MIT license
Documentation: https://npstructures.readthedocs.io.
Features
The main feature is the RaggedArray class which enables numpy-like behaviour and performance for arrays where the length of the rows differ.
RaggedArray is meant as a drop-in replacement for numpy when you have arrays with differing row lengths. As such, familiarity with numpy is assumed. The simplest way to construct a RaggedArray is from a list of lists:
>>> from npstructures import RaggedArray >>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
A RaggedArray can be indexed much like a numpy array:
>>> ra[1] array([4, 1, 3, 7]) >>> ra[1, 3] 7 >>> ra[1:3] RaggedArray([[4, 1, 3, 7], [9]]) >>> ra[[0, 3]] RaggedArray([[1, 2], [8, 7, 3, 4]]) >>> ra[0] = [0, 0] >>> ra RaggedArray([[0, 0], [4, 1, 3, 7], [9], [8, 7, 3, 4]]) >>> ra[1:3] = [[10], [20]] >>> ra RaggedArray([[0, 0], [10, 10, 10, 10], [20], [8, 7, 3, 4]]) >>> ra[[0, 2, 3]] = RaggedArray([[2, 2], [3], [5, 5, 5, 5]]) >>> ra RaggedArray([[2, 2], [10, 10, 10, 10], [3], [5, 5, 5, 5]])
numpy ufuncs can be applied to RaggedArray objects:
>>> ra + 1 RaggedArray([[2, 3], [5, 2, 4, 8], [10], [9, 8, 4, 5]]) >>> ra*2 RaggedArray([[2, 4], [8, 2, 6, 14], [18], [16, 14, 6, 8]]) >>> ra + [[1], [10], [100], [1000]] RaggedArray([[2, 3], [14, 11, 13, 17], [109], [1008, 1007, 1003, 1004]]) >>> ra - (ra*2) RaggedArray([[-1, -2], [-4, -1, -3, -7], [-9], [-8, -7, -3, -4]])
Some numpy functions can be applied to RaggedArray objects:
>>> import numpy as np >>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]]) >>> np.concatenate((ra, ra*10)) RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4], [10, 20], [40, 10, 30, 70], [90], [80, 70, 30, 40]]) >>> np.nonzero(ra>3) (array([1, 1, 2, 3, 3, 3]), array([0, 3, 0, 0, 1, 3])) >>> np.ones_like(ra) RaggedArray([[1, 1], [1, 1, 1, 1], [1], [1, 1, 1, 1]])
In addition to this. HashTable and Counter provides simple dict-like behaviour for numpy arrays:
HashTable can be used for dict-like functionality of numpy arrays. The simplest way to construct a HashTable is from an array of keys and an array of values (note that the set of keys cannot be modified after the initialization of the object):
>>> table = HashTable([11, 113, 1191, 11199], [2, 3, 5, 7]) >>> table[11] array([2]) >>> table[[113, 11199]] array([3, 7]) >>> table[11]=1000 >>> table HashTable([ 113 1191 11 11199], [ 3 5 1000 7]) >>> table[[113, 1191]]=2000 >>> table HashTable([ 113 1191 11 11199], [2000 2000 1000 7]) >>> table[[113, 1191, 11, 11191]] = [1, 2, 3, 4] >>> table[[113, 1191, 11, 11199]] = [1, 2, 3, 4] >>> table HashTable([ 113 1191 11 11199], [1 2 3 4])
Counter objects supports counting the occurances of a predefined set of keys in a set of samples. For instance, to count the occurances of 3 and 1 in the list [3, 2, 1, 3, 4, 1, 1]:
>>> from npstructures import Counter >>> counter = Counter([3, 1]) >>> counter.count([3, 2, 1, 3, 4, 1, 1]) >>> counter Counter([3 1], [2 3])
Credits
This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.
History
0.2.0 (2022-06-17)
Tested indexing, ufuncs and arrayfunctions with hypothesis
0.1.0 (2021-12-27)
First release on PyPI.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file npstructures-0.2.19.tar.gz
.
File metadata
- Download URL: npstructures-0.2.19.tar.gz
- Upload date:
- Size: 47.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8091ff5f6e3f0bef8f8c847a95d784366762bc4426616c02381a071228b9b7fb |
|
MD5 | ea8d82a03cb9fdbbba0f7a5961f3816f |
|
BLAKE2b-256 | f572e2574d0f865879218cbc40a018c4935bb4475c5a8a14b96fd3de21092c5a |
File details
Details for the file npstructures-0.2.19-py2.py3-none-any.whl
.
File metadata
- Download URL: npstructures-0.2.19-py2.py3-none-any.whl
- Upload date:
- Size: 36.4 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d833606978cfd5b01b5fb3b74bb9896a53a1e1f82d4b5cc09def1920e41fdbd |
|
MD5 | dbe185716165d33f6383a5e8f9bb8d09 |
|
BLAKE2b-256 | 2a6bfdbd754e75c16c1da91f159170d2b25e9028f21bbc5d2102028b9912cefb |