Skip to main content

Simple data structures that augments the numpy library

Project description

Numpy Structures

https://img.shields.io/pypi/v/npstructures.svg https://github.com/knutdrand/npstructures/actions/workflows/python-install-and-test.yml/badge.svg Documentation Status

Simple data structures that augments the numpy library

Features

The main feature is the RaggedArray class which enables numpy-like behaviour and performance for arrays where the length of the rows differ.

RaggedArray is meant as a drop-in replacement for numpy when you have arrays with differing row lengths. As such, familiarity with numpy is assumed. The simplest way to construct a RaggedArray is from a list of lists:

>>> from npstructures import RaggedArray
>>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])

A RaggedArray can be indexed much like a numpy array:

>>> ra[1]
array([4, 1, 3, 7])
>>> ra[1, 3]
7
>>> ra[1:3]
RaggedArray([[4, 1, 3, 7], [9]])
>>> ra[[0, 3]]
RaggedArray([[1, 2], [8, 7, 3, 4]])
>>> ra[0] = [0, 0]
>>> ra
RaggedArray([[0, 0], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
>>> ra[1:3] = [[10], [20]]
>>> ra
RaggedArray([[0, 0], [10, 10, 10, 10], [20], [8, 7, 3, 4]])
>>> ra[[0, 2, 3]] = RaggedArray([[2, 2], [3], [5, 5, 5, 5]])
>>> ra
RaggedArray([[2, 2], [10, 10, 10, 10], [3], [5, 5, 5, 5]])

numpy ufuncs can be applied to RaggedArray objects:

>>> ra + 1
RaggedArray([[2, 3], [5, 2, 4, 8], [10], [9, 8, 4, 5]])
>>> ra*2
RaggedArray([[2, 4], [8, 2, 6, 14], [18], [16, 14, 6, 8]])
>>> ra + [[1], [10], [100], [1000]]
RaggedArray([[2, 3], [14, 11, 13, 17], [109], [1008, 1007, 1003, 1004]])
>>> ra - (ra*2)
RaggedArray([[-1, -2], [-4, -1, -3, -7], [-9], [-8, -7, -3, -4]])

Some numpy functions can be applied to RaggedArray objects:

>>> import numpy as np
>>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
>>> np.concatenate((ra, ra*10))
RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4], [10, 20], [40, 10, 30, 70], [90], [80, 70, 30, 40]])
>>> np.nonzero(ra>3)
(array([1, 1, 2, 3, 3, 3]), array([0, 3, 0, 0, 1, 3]))
>>> np.ones_like(ra)
RaggedArray([[1, 1], [1, 1, 1, 1], [1], [1, 1, 1, 1]])

In addition to this. HashTable and Counter provides simple dict-like behaviour for numpy arrays:

HashTable can be used for dict-like functionality of numpy arrays. The simplest way to construct a HashTable is from an array of keys and an array of values (note that the set of keys cannot be modified after the initialization of the object):

>>> table = HashTable([11, 113, 1191, 11199], [2, 3, 5, 7])
>>> table[11]
array([2])
>>> table[[113, 11199]]
array([3, 7])
>>> table[11]=1000
>>> table
HashTable([  113  1191    11 11199], [   3    5 1000    7])
>>> table[[113, 1191]]=2000
>>> table
HashTable([  113  1191    11 11199], [2000 2000 1000    7])
>>> table[[113, 1191, 11, 11191]] = [1, 2, 3, 4]
>>> table[[113, 1191, 11, 11199]] = [1, 2, 3, 4]
>>> table
HashTable([  113  1191    11 11199], [1 2 3 4])

Counter objects supports counting the occurances of a predefined set of keys in a set of samples. For instance, to count the occurances of 3 and 1 in the list [3, 2, 1, 3, 4, 1, 1]:

>>> from npstructures import Counter
>>> counter = Counter([3, 1])
>>> counter.count([3, 2, 1, 3, 4, 1, 1])
>>> counter
Counter([3 1], [2 3])

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

History

0.2.0 (2022-06-17)

  • Tested indexing, ufuncs and arrayfunctions with hypothesis

0.1.0 (2021-12-27)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

npstructures-0.2.19.tar.gz (47.4 kB view details)

Uploaded Source

Built Distribution

npstructures-0.2.19-py2.py3-none-any.whl (36.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file npstructures-0.2.19.tar.gz.

File metadata

  • Download URL: npstructures-0.2.19.tar.gz
  • Upload date:
  • Size: 47.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for npstructures-0.2.19.tar.gz
Algorithm Hash digest
SHA256 8091ff5f6e3f0bef8f8c847a95d784366762bc4426616c02381a071228b9b7fb
MD5 ea8d82a03cb9fdbbba0f7a5961f3816f
BLAKE2b-256 f572e2574d0f865879218cbc40a018c4935bb4475c5a8a14b96fd3de21092c5a

See more details on using hashes here.

File details

Details for the file npstructures-0.2.19-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for npstructures-0.2.19-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0d833606978cfd5b01b5fb3b74bb9896a53a1e1f82d4b5cc09def1920e41fdbd
MD5 dbe185716165d33f6383a5e8f9bb8d09
BLAKE2b-256 2a6bfdbd754e75c16c1da91f159170d2b25e9028f21bbc5d2102028b9912cefb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page