Skip to main content

Simple data structures that augments the numpy library

Project description

Numpy Structures

https://img.shields.io/pypi/v/npstructures.svg https://github.com/knutdrand/npstructures/actions/workflows/python-install-and-test.yml/badge.svg Documentation Status

Simple data structures that augments the numpy library

Features

The main feature is the RaggedArray class which enables numpy-like behaviour and performance for arrays where the length of the rows differ.

RaggedArray is meant as a drop-in replacement for numpy when you have arrays with differing row lengths. As such, familiarity with numpy is assumed. The simplest way to construct a RaggedArray is from a list of lists:

>>> from npstructures import RaggedArray
>>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
A RaggedArray can be indexed much like a numpy array::
>>> ra[1]
array([4, 1, 3, 7])
>>> ra[1, 3]
7
>>> ra[1:3]
RaggedArray([[4, 1, 3, 7], [9]])
>>> ra[[0, 3]]
RaggedArray([[1, 2], [8, 7, 3, 4]])
>>> ra[0] = [0, 0]
>>> ra
RaggedArray([[0, 0], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
>>> ra[1:3] = [[10], [20]]
>>> ra
RaggedArray([[0, 0], [10, 10, 10, 10], [20], [8, 7, 3, 4]])
>>> ra[[0, 2, 3]] = RaggedArray([[2, 2], [3], [5, 5, 5, 5]])
>>> ra
RaggedArray([[2, 2], [10, 10, 10, 10], [3], [5, 5, 5, 5]])
numpy ufuncs can be applied to RaggedArray objects::
>>> ra + 1
RaggedArray([[2, 3], [5, 2, 4, 8], [10], [9, 8, 4, 5]])
>>> ra*2
RaggedArray([[2, 4], [8, 2, 6, 14], [18], [16, 14, 6, 8]])
>>> ra + [[1], [10], [100], [1000]]
RaggedArray([[2, 3], [14, 11, 13, 17], [109], [1008, 1007, 1003, 1004]])
>>> ra - (ra*2)
RaggedArray([[-1, -2], [-4, -1, -3, -7], [-9], [-8, -7, -3, -4]])
Some numpy functions can be applied to RaggedArray objects::
>>> import numpy as np
>>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
>>> np.concatenate((ra, ra*10))
RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4], [10, 20], [40, 10, 30, 70], [90], [80, 70, 30, 40]])
>>> np.nonzero(ra>3)
(array([1, 1, 2, 3, 3, 3]), array([0, 3, 0, 0, 1, 3]))
>>> np.ones_like(ra)
RaggedArray([[1, 1], [1, 1, 1, 1], [1], [1, 1, 1, 1]])

In addition to this. HashTable and Counter provides simple dict-like behaviour for numpy arrays:

HashTable can be used for dict-like functionality of numpy arrays. The simplest way to construct a HashTable is from an array of keys and an array of values (note that the set of keys cannot be modified after the initialization of the object):

>>> table = HashTable([11, 113, 1191, 11199], [2, 3, 5, 7])
>>> table[11]
array([2])
>>> table[[113, 11199]]
array([3, 7])
>>> table[11]=1000
>>> table
HashTable([  113  1191    11 11199], [   3    5 1000    7])
>>> table[[113, 1191]]=2000
>>> table
HashTable([  113  1191    11 11199], [2000 2000 1000    7])
>>> table[[113, 1191, 11, 11191]] = [1, 2, 3, 4]
>>> table[[113, 1191, 11, 11199]] = [1, 2, 3, 4]
>>> table
HashTable([  113  1191    11 11199], [1 2 3 4])

Counter objects supports counting the occurances of a predefined set of keys in a set of samples. For instance, to count the occurances of 3 and 1 in the list [3, 2, 1, 3, 4, 1, 1]:

>>> from npstructures import Counter
>>> counter = Counter([3, 1])
>>> counter.count([3, 2, 1, 3, 4, 1, 1])
>>> counter
Counter([3 1], [2 3])

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

History

0.2.0 (2022-06-17)

  • Tested indexing, ufuncs and arrayfunctions with hypothesis

0.1.0 (2021-12-27)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

npstructures-0.2.17.tar.gz (47.2 kB view hashes)

Uploaded Source

Built Distribution

npstructures-0.2.17-py2.py3-none-any.whl (36.3 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page