Skip to main content

The nptsne package is designed to export a number of python classes that wrap tSNE and HSNE

Project description

nptsne - A numpy compatible python extension for GPGPU linear complexity tSNE

The nptsne package is designed to export a number of python classes that wrap GPGPU linear complexity tSNE or the hierarchical SNE (hSNE) method.

When using nptsne please include the following citations when using t-SNE and or using HSNE:

using t-SNE

*Pezzotti, N., Thijssen, J., Mordvintsev, A., Höllt, T., Van Lew, B., Lelieveldt, B.P.F., Eisemann, E., Vilanova, A., (2020), "GPGPU Linear Complexity t-SNE Optimization" in IEEE Transactions on Visualization and Computer Graphics.
doi: 10.1109/TVCG.2019.2934307
keywords: {Minimization;Linear programming;Computational modeling;Approximation algorithms;Complexity theory;Optimization;Data visualization;High Dimensional Data;Dimensionality Reduction;Progressive Visual Analytics;Approximate Computation;GPGPU},
URL: https://doi.org/10.1109/TVCG.2019.2934307 *

using HNSE

*Pezzotti, N., Höllt, T., Lelieveldt, B., Eisemann, E., Vilanova, A., (2016), "Hierarchical Stochastic Neighbor Embedding" in Computer Graphics Forum, 35: 21-30.
doi:10.1111/cgf.12878
keywords: {Categories and Subject Descriptors (according to ACM CCS), I.3.0 Computer Graphics: General},
URL: https://doi.org/10.1111/cgf.12878 *

Attributions

The t-SNE and HSNE implementations are the original work of the authors named in the literature.

Full documentation

Full documentation is available at the nptsne doc pages

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nptsne-1.2.0-cp39-cp39-win_amd64.whl (417.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

nptsne-1.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (740.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

nptsne-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl (958.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nptsne-1.2.0-cp38-cp38-win_amd64.whl (422.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

nptsne-1.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (740.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

nptsne-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl (958.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nptsne-1.2.0-cp37-cp37m-win_amd64.whl (421.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

nptsne-1.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (745.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

nptsne-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (954.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

nptsne-1.2.0-cp36-cp36m-win_amd64.whl (421.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

nptsne-1.2.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (745.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

nptsne-1.2.0-cp36-cp36m-macosx_10_9_x86_64.whl (954.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file nptsne-1.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nptsne-1.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 417.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for nptsne-1.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1ce95377ca0c63f43665c6494491259adc09dd7a282f4289413cd950aefc70f4
MD5 bdcf479b681d62a8dba332640e63083a
BLAKE2b-256 89903c801fe292932758a114cecb43b4b6e495a03aa7b588e7df9d851aa96437

See more details on using hashes here.

File details

Details for the file nptsne-1.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for nptsne-1.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a457a0076f0377e53b8059555cbed87633eaf446d1240ebb5129e7255222e6db
MD5 1254d142bd38598878bfd1603e796cad
BLAKE2b-256 fe9bd7dc996ad77972b6da8e8e1b80d6857d7ce17914f29a0845aa53c0aad61a

See more details on using hashes here.

File details

Details for the file nptsne-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nptsne-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 958.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for nptsne-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 643a9d08683c9f725dad62351ea54f9986b2da43b7b18232f945852a14a07430
MD5 7be94f1250cc97dac3aaa2c9d5b6d21a
BLAKE2b-256 9adf78b1f9582717a373a1dbbfd7b234357904f1d428f0019466fcd0864a19b2

See more details on using hashes here.

File details

Details for the file nptsne-1.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nptsne-1.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 422.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for nptsne-1.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 50d68050f95ef70435fd5d7f2f6f635116cdf2e2ab9bc71eff1ce356e9ae73f5
MD5 79ac2fb3d84b7e7af22b09571faa17d1
BLAKE2b-256 559fba44358c52ff888e27f07b431702c18b29648b94825084864ea2ef4ec1d4

See more details on using hashes here.

File details

Details for the file nptsne-1.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for nptsne-1.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3087f96648c4c5a78bf9bec8ea8938df29e644bbb423bc25f23201c83267a3bb
MD5 837797e7acca083ed523c2c3bc426a67
BLAKE2b-256 55202f2d5b300576d7654198dd5e0a030d9d1f2e255c80f54fc0a9fc64f0ca2f

See more details on using hashes here.

File details

Details for the file nptsne-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nptsne-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 958.1 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for nptsne-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fb4e25500f82a960595678764dac7444661d374fbf18b3a61090208a89524bf2
MD5 515bba617a377ddc4bb193f43392b18f
BLAKE2b-256 ae0d732dcd78af1d88bbe2274edfabf8ca8e5fac57d3dc52dcf1db8a46481099

See more details on using hashes here.

File details

Details for the file nptsne-1.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nptsne-1.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 421.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for nptsne-1.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 046bef98ec25db38e6ec4da9650dcd2271ac31c975e3a0e3d905e62065bede95
MD5 7bc267ca659617caa536c3a69905c97a
BLAKE2b-256 725896e732fa8cbc8993cca3676bbe25e7db8c995668d385c538b951c95a6096

See more details on using hashes here.

File details

Details for the file nptsne-1.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for nptsne-1.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dc670f8abdb394d154d220db5bf62232e40a2056195fd76f8924491dd640395f
MD5 b31bc153eeef2ea1c8f3f08ba384bd8a
BLAKE2b-256 2da841ee9d01d6cde9f73dc38ceff2980189badfb71f91007c72543c5d32f259

See more details on using hashes here.

File details

Details for the file nptsne-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nptsne-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 954.6 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for nptsne-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 71079e7f1034df8ec18825bcd462253ef621ff6683d232cda31430f137b9d36b
MD5 67536f60c9274eed165858419e9b31d7
BLAKE2b-256 eae3bce8d67b31ad7934fba581cb7e946f59e39fb02a5c796a4dad598fb28829

See more details on using hashes here.

File details

Details for the file nptsne-1.2.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: nptsne-1.2.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 421.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for nptsne-1.2.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c671a2b4c689fcc376ef50fedaca4b5c2094f233586e2c46237afe21258d697c
MD5 12c9a4e1df2ce0c1e3c76dd696347982
BLAKE2b-256 dfa63d8f5d427df0bb6be54c11886ab93254aaaddcc3d9f36ee9c869f557ff8c

See more details on using hashes here.

File details

Details for the file nptsne-1.2.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for nptsne-1.2.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cc58fd00b94f163d614fd57071ea6e41535bb001ff37e216f65022c0c46d6cfb
MD5 734c4bff60c58a7ba1f071daa5e7a0c0
BLAKE2b-256 5669d6e8f94d34115016b28e088336d41176473fc5bbb5955e14e40f9886e2c5

See more details on using hashes here.

File details

Details for the file nptsne-1.2.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nptsne-1.2.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 954.6 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for nptsne-1.2.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c9c326ea626c9f3da6cb30d996f7ad21649a5589d41d7205bd2749468df364b
MD5 c021179dcacbcf984c163df3e7be1bd7
BLAKE2b-256 33ecdda406dea3f7133ebcd5117831d037fb70c60a92c1e1ae2139cd41fc9d41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page