Type hints for Numpy.
Project description
nptyping
Type hints for Numpy!
Installation
pip install nptyping
Usage
NDArray
nptyping.NDArray lets you define the shape and type of your numpy.ndarray.
You can:
- specify the number of dimensions;
- specify the size per dimension;
- specify the type of the array;
- instance check your array with your nptying type.
Examples
An Array with any dimensions of any size and any type:
>>> from nptyping import NDArray
>>> from typing import Any
>>> NDArray
NDArray[(typing.Any, ...), typing.Any]
>>> NDArray[(Any, ...)]
NDArray[(typing.Any, ...), typing.Any]
>>> NDArray[(Any, ...), Any]
NDArray[(typing.Any, ...), typing.Any]
An array with 1 dimension of any size and any type:
>>> NDArray[Any]
NDArray[(typing.Any,), typing.Any]
>>> NDArray[(Any,)]
NDArray[(typing.Any,), typing.Any]
>>> NDArray[Any, Any]
NDArray[(typing.Any,), typing.Any]
>>> NDArray[(Any,), Any]
NDArray[(typing.Any,), typing.Any]
An array with 1 dimension of size 3 and any type:
>>> NDArray[3]
NDArray[(3,), typing.Any]
>>> NDArray[(3,)]
NDArray[(3,), typing.Any]
>>> NDArray[(3,), Any]
NDArray[(3,), typing.Any]
An array with 3 dimensions of size 3, 3 and any and any type:
>>> NDArray[3, 3, Any]
NDArray[(3, 3, typing.Any), typing.Any]
>>> NDArray[(3, 3, Any)]
NDArray[(3, 3, typing.Any), typing.Any]
>>> NDArray[(3, 3, Any), Any]
NDArray[(3, 3, typing.Any), typing.Any]
An array with any dimensions of any size and type int:
>>> NDArray[int]
NDArray[(typing.Any, ...), int]
>>> NDArray[(Any, ...), int]
NDArray[(typing.Any, ...), int]
An array with 1 dimension of size 3 and type int:
>>> NDArray[3, int]
NDArray[(3,), int]
>>> NDArray[(3,), int]
NDArray[(3,), int]
An array with any dimensions of size 3 and type int:
>>> NDArray[(3, ...), int]
NDArray[(3, ...), int]
An array with 3 dimensions of sizes 3, 3, 5 and type int:
>>> NDArray[(3, 3, 5), int]
NDArray[(3, 3, 5), int]
Checking your instances
You can use NDArray with isinstance to dynamically check your arrays.
>>> import numpy as np
>>> arr = np.array([[1, 2, 3],
... [4, 5, 6]])
>>> isinstance(arr, NDArray[(2, 3), int])
True
>>> isinstance(arr, NDArray[(2, 3), float])
False
>>> isinstance(arr, NDArray[(2, 3, 1), int])
False
Finding the right annotation
You can use NDArray to find the type of a numpy array for you using NDArray.type_of:
>>> NDArray.type_of(np.array([[1, 2], [3, 4.0]]))
NDArray[(2, 2), float64]
py_type
With py_type you can get the Python builtin type that corresponds to a Numpy dtype:
>>> from nptyping import py_type
>>> py_type(np.int32)
<class 'int'>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file nptyping-1.0.1-py3-none-any.whl.
File metadata
- Download URL: nptyping-1.0.1-py3-none-any.whl
- Upload date:
- Size: 7.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
9f782826d5749fd8448c156b46b2deb84b3a09db860ac4a9881f4e5bd5181afd
|
|
| MD5 |
2bf38020552c381d92599379365e3271
|
|
| BLAKE2b-256 |
73119e15ef1cd231182a3b568b65a612a173061d826de805481f44848fc27a32
|