Skip to main content

A fast, regular-expression based library for parsing dates, plus support for ISO 8601 durations.

Project description

nr.parsing.date

A fast, regular-expression based library for parsing dates, plus support for ISO 8601 durations.

Requirements

  • Python 3.6+

Supported Date & Time Formats

  • %Y – 4 digit year
  • %m – 2 digit month
  • %d – 2 digit day
  • %H – 2 digit hour
  • %M – 2 digit minute
  • %S – 2 digit second
  • %f – arbitrary precision milliseconds
  • %z – timezone offset ([+-]\d\d:?\d\d offset or Z for UTC)

Built-in format collections

  • ISO_8601 (see ISO 8601 on Wikipedia)
  • JAVA_OFFSET_DATETIME (see OffsetDateTime class on the Java 8 API documentation)

Features

  • Easily extensible to support more date/time format options
  • Date/time formats can use an extended regex-style mode to mark format options as optional (e.g. the two formats %Y and %Y-%m can be expressed in a single regex-style format string as %Y(-%m)?)

Quickstart

from nr.parsing.date import duration, ISO_8601
ISO_8601.parse('2021-04-21T10:13:00.124+0000')
duration.parse('P3Y6M4DT12H30M5S')

Benchmark

The below benchmark compares the performance of testing various format-strings for ISO-8601 dates using the standard library, dateutil.parser.parse(), dateutil.parser.isoparse() and the nr.parsing.date.ISO_8601.parse_datetime() function.

Conclusion: Faster than the standard library but with the same flexibility (except for the missing support for most uncommon format options).

asv run
· Creating environments
· Discovering benchmarks
· Running 5 total benchmarks (1 commits * 1 environments * 5 benchmarks)
[  0.00%] · For nr.parsing.date commit dd35e795 <develop>:
[  0.00%] ·· Benchmarking virtualenv-py3.8-pandas-python-dateutil
[ 10.00%] ··· Running (benchmarks.DatetimeParsingSuite.time_datetime_datetime_strptime--).....
[ 60.00%] ··· benchmarks.DatetimeParsingSuite.time_datetime_datetime_strptime                                     2.22±0.3ms
[ 70.00%] ··· benchmarks.DatetimeParsingSuite.time_datetime_datetime_strptime_reversed                           2.12±0.08ms
[ 80.00%] ··· benchmarks.DatetimeParsingSuite.time_dateutil_parser_isoparse                                      1.46±0.02ms
[ 90.00%] ··· benchmarks.DatetimeParsingSuite.time_dateutil_parser_parse                                          2.77±0.1ms
[100.00%] ··· benchmarks.DatetimeParsingSuite.time_nr_parsing_date_ISO_8601_parse_datetime                       1.62±0.03ms

Copyright © 2020 Niklas Rosenstein

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nr.parsing.date-1.0.3.tar.gz (11.7 kB view details)

Uploaded Source

Built Distribution

nr.parsing.date-1.0.3-py3-none-any.whl (12.2 kB view details)

Uploaded Python 3

File details

Details for the file nr.parsing.date-1.0.3.tar.gz.

File metadata

  • Download URL: nr.parsing.date-1.0.3.tar.gz
  • Upload date:
  • Size: 11.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.5

File hashes

Hashes for nr.parsing.date-1.0.3.tar.gz
Algorithm Hash digest
SHA256 dbd4fe953c2846a8d2e454c760049e262f302f43e5193705dc0abb794af6b3d7
MD5 e9693f5a7508d57421001d433563b330
BLAKE2b-256 d2676bc0447b2ffc13feaca12b0180e1ce36c356d02f6a256eb2b60e84c0ba19

See more details on using hashes here.

File details

Details for the file nr.parsing.date-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: nr.parsing.date-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 12.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.5

File hashes

Hashes for nr.parsing.date-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 9e14541c9596014d5a631031be725dc303ff78062ffdc5b34a30712faf11a914
MD5 d2789fb4d13a4491a68efdceb28b96af
BLAKE2b-256 8d09c98add9cc28c896fae8383b2291e9e418f40d56a9714a647b7edb89da844

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page