Skip to main content

A fast, regular-expression based library for parsing dates, plus support for ISO 8601 durations.

Project description

nr.parsing.date

A fast, regular-expression based library for parsing dates, plus support for ISO 8601 durations.

Requirements

  • Python 3.6+

Supported Date & Time Formats

  • %Y – 4 digit year
  • %m – 2 digit month
  • %d – 2 digit day
  • %H – 2 digit hour
  • %M – 2 digit minute
  • %S – 2 digit second
  • %f – arbitrary precision milliseconds
  • %z – timezone offset ([+-]\d\d:?\d\d offset or Z for UTC)

Built-in format collections

  • ISO_8601 (see ISO 8601 on Wikipedia)
  • JAVA_OFFSET_DATETIME (see OffsetDateTime class on the Java 8 API documentation)

Features

  • Easily extensible to support more date/time format options
  • Date/time formats can use an extended regex-style mode to mark format options as optional (e.g. the two formats %Y and %Y-%m can be expressed in a single regex-style format string as %Y(-%m)?)

Quickstart

from nr.parsing.date import duration, ISO_8601
ISO_8601.parse('2021-04-21T10:13:00.124+0000')
duration.parse('P3Y6M4DT12H30M5S')

Benchmark

The below benchmark compares the performance of testing various format-strings for ISO-8601 dates using the standard library, dateutil.parser.parse(), dateutil.parser.isoparse() and the nr.parsing.date.ISO_8601.parse_datetime() function.

Conclusion: Faster than the standard library but with the same flexibility (except for the missing support for most uncommon format options).

asv run
· Creating environments
· Discovering benchmarks
· Running 5 total benchmarks (1 commits * 1 environments * 5 benchmarks)
[  0.00%] · For nr.parsing.date commit dd35e795 <develop>:
[  0.00%] ·· Benchmarking virtualenv-py3.8-pandas-python-dateutil
[ 10.00%] ··· Running (benchmarks.DatetimeParsingSuite.time_datetime_datetime_strptime--).....
[ 60.00%] ··· benchmarks.DatetimeParsingSuite.time_datetime_datetime_strptime                                     2.22±0.3ms
[ 70.00%] ··· benchmarks.DatetimeParsingSuite.time_datetime_datetime_strptime_reversed                           2.12±0.08ms
[ 80.00%] ··· benchmarks.DatetimeParsingSuite.time_dateutil_parser_isoparse                                      1.46±0.02ms
[ 90.00%] ··· benchmarks.DatetimeParsingSuite.time_dateutil_parser_parse                                          2.77±0.1ms
[100.00%] ··· benchmarks.DatetimeParsingSuite.time_nr_parsing_date_ISO_8601_parse_datetime                       1.62±0.03ms

Copyright © 2020 Niklas Rosenstein

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nr.parsing.date-1.0.1.tar.gz (11.7 kB view details)

Uploaded Source

Built Distribution

nr.parsing.date-1.0.1-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file nr.parsing.date-1.0.1.tar.gz.

File metadata

  • Download URL: nr.parsing.date-1.0.1.tar.gz
  • Upload date:
  • Size: 11.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.5

File hashes

Hashes for nr.parsing.date-1.0.1.tar.gz
Algorithm Hash digest
SHA256 1cf11c190b88540374629ad86c3f926e3f91604cb43a392d0290fa163552eaa5
MD5 ca4bfca552429e69e4acd18254ae86ca
BLAKE2b-256 c5cec8cf7ac87d55205bc9d3a3f030a946f3d6527f98c75526356984afd610df

See more details on using hashes here.

File details

Details for the file nr.parsing.date-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: nr.parsing.date-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.5

File hashes

Hashes for nr.parsing.date-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e21e7882ab7bbacf124c2689a218ab63a101d9e1e047bd7432caf3d79f242535
MD5 6814de423cd89fefedf041b3c12813cb
BLAKE2b-256 434ffb2682aaf413a92635339325832e9266da5d199255a3f4163721cee10aaf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page