Skip to main content

Python interface for the NRLMSISE-00 neutral atmosphere model

Project description

PyNRLMSISE-00

Python interface for the NRLMSISE-00 empirical neutral atmosphere model

builds docs package wheel pyversions codecov coveralls scrutinizer

This python version of the NRLMSISE00 upper atmosphere model is based on the C-version of the code, available at www.brodo.de/space/nrlmsise. The C code is imported as a git submodule from git://git.linta.de/~brodo/nrlmsise-00.git (browsable version at: https://git.linta.de/?p=~brodo/nrlmsise-00.git).

:warning: This python interface is in the beta stage, that is, it should work but may still have some bugs. The interface is supposed to be stable but may still change slightly in future versions.

Documentation can be found at https://pynrlmsise00.readthedocs.io

Quote from https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=MSISE:

“The MSISE model describes the neutral temperature and densities in Earth's atmosphere from ground to thermospheric heights. The NRLMSIS-00 empirical atmosphere model was developed by Mike Picone, Alan Hedin, and Doug Drob.”

Install

Requirements

  • numpy - required
  • spaceweather and xarray - optional, for the datatset sub-package, see below
  • pytest - optional, for testing
  • sphinx - optional, to build the documentation

To compile the C source code, additional system header files may be required. For example on Debian/Ubuntu Linux, the package libc6-dev is needed.

pynrlmsise00

A pip package called nrlmsise00 is available from the main package repository, and can be installed with:

$ pip install nrlmsise00

In some cases this will install from the source package and the note above about the additional requirements applies.

As binary package support is limited, pynrlmsise00 can be installed with pip directly from github (see https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support and https://pip.pypa.io/en/stable/reference/pip_install/#git):

$ pip install [-e] git+https://github.com/st-bender/pynrlmsise00.git

The other option is to use a local clone:

$ git clone https://github.com/st-bender/pynrlmsise00.git
$ cd pynrlmsise00
$ git submodule init
$ git submodule update

and then using pip (optionally using -e, see https://pip.pypa.io/en/stable/reference/pip_install/#install-editable):

$ pip install [-e] .

or using setup.py:

$ python setup.py install

Optionally, test the correct function of the module with

$ py.test [-v]

or even including the doctests in this document:

$ py.test [-v] --doctest-glob='*.md'

Usage

The python module itself is named nrlmsise00 and is imported as usual:

>>> import nrlmsise00

Basic class and method documentation is accessible via pydoc:

$ pydoc nrlmsise00

Python interface

The Python interface functions take datetime.datetime objects for convenience. The local solar time is calculated from that time and the given location, but it can be set explicitly via the lst keyword. The returned value has the same format as the original C version (see below). Because of their similarity, gtd7() and gtd7d() are selected via the method keyword, gtd7 is the default.

The return values are tuples of two lists containing the densities (d[0]--d[8]) and temperatures (t[0], t[1]).

The output has the same order as the C reference code, in particular:

  • d[0] - He number density [cm⁻³]
  • d[1] - O number density [cm⁻³]
  • d[2] - N2 number density [cm⁻³]
  • d[3] - O2 number density [cm⁻³]
  • d[4] - Ar number density [cm⁻³]
  • d[5] - total mass density [g cm⁻³]) (includes d[8] in gtd7d())
  • d[6] - H number density [cm⁻³]
  • d[7] - N number density [cm⁻³]
  • d[8] - Anomalous oxygen number density [cm⁻³]
  • t[0] - exospheric temperature [K]
  • t[1] - temperature at alt [K]

The flags and ap_a value array are set via keywords, but both default to the standard setting, such that changing them should not be necessary for most use cases. For example setting flag[0] to 1 changes the output to metres and kilograms instead of centimetres and grams (0 is the default).

>>> from datetime import datetime
>>> from nrlmsise00 import msise_model
>>> msise_model(datetime(2009, 6, 21, 8, 3, 20), 400, 60, -70, 150, 150, 4, lst=16)
([666517.690495152, 113880555.97522168, 19982109.255734544, 402276.3585712511, 3557.464994515886, 4.074713532757222e-15, 34753.12399717142, 4095913.2682930017, 26672.73209335869], [1250.5399435607994, 1241.4161300191206])

NumPy interface

A numpy compatible flat version is available as msise_flat(), it returns a 11-element numpy.ndarray with the densities in the first 9 entries and the temperatures in the last two entries. That is ret = numpy.ndarray([d[0], ..., d[8], t[0], t[1]]).

>>> from datetime import datetime
>>> from nrlmsise00 import msise_flat
>>> msise_flat(datetime(2009, 6, 21, 8, 3, 20), 400, 60, -70, 150, 150, 4)
array([5.65085279e+05, 6.79850175e+07, 1.18819263e+07, 2.37030166e+05,
       1.32459684e+03, 2.39947892e-15, 5.32498381e+04, 1.07596246e+06,
       2.66727321e+04, 1.10058413e+03, 1.09824872e+03])

All arguments can be numpy.ndarrays, but must be broadcastable to a common shape. For example to calculate the values for three altitudes (200, 300, and 400 km) and two latitude locations (60 and 70 °N) simultaneously, one can use numpy.newaxis (which is equal to None) like this:

>>> from datetime import datetime
>>> import numpy as np
>>> from nrlmsise00 import msise_flat
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> # Using broadcasting, the output will be a 2 x 3 x 11 element array:
>>> msise_flat(datetime(2009, 6, 21, 8, 3, 20), alts[None, :], lats[:, None], -70, 150, 150, 4)
array([[[1.36949418e+06, 1.95229496e+09, 3.83824808e+09, 1.79130515e+08,
         4.92145034e+06, 2.40511268e-13, 8.34108685e+04, 1.74317585e+07,
         3.45500931e-08, 1.10058413e+03, 9.68827485e+02],
        [8.40190601e+05, 3.25739060e+08, 1.82477392e+08, 5.37973134e+06,
         6.53609278e+04, 1.75304136e-14, 5.92944463e+04, 4.36516218e+06,
         1.03939126e+02, 1.10058413e+03, 1.08356514e+03],
        [5.65085279e+05, 6.79850175e+07, 1.18819263e+07, 2.37030166e+05,
         1.32459684e+03, 2.39947892e-15, 5.32498381e+04, 1.07596246e+06,
         2.66727321e+04, 1.10058413e+03, 1.09824872e+03]],
<BLANKLINE>
       [[1.10012225e+06, 1.94725472e+09, 4.08547233e+09, 1.92320077e+08,
         6.65460281e+06, 2.52846563e-13, 6.16745965e+04, 2.45012145e+07,
         5.21846603e-08, 1.13812434e+03, 1.00132640e+03],
        [6.83809952e+05, 3.42643970e+08, 2.13434661e+08, 6.43426889e+06,
         1.01162173e+05, 1.95300073e-14, 4.36031132e+04, 6.70490625e+06,
         1.59911615e+02, 1.13812434e+03, 1.12084651e+03],
        [4.65787225e+05, 7.52160226e+07, 1.51795904e+07, 3.13560147e+05,
         2.32541183e+03, 2.76353370e-15, 3.92811827e+04, 1.73321928e+06,
         4.12296154e+04, 1.13812434e+03, 1.13580463e+03]]])

Xarray Dataset interface

Output to a 4-D xarray.Dataset is supported via the dataset submodule which can be installed with:

pip install [-U] 'nrlmsise00[dataset]'

This module provides a 4-D version msise_4d() to broadcast the 1-D inputs for time, altitude, latitude, and longitude. It also uses the spaceweather package by default to automatically obtain the geomagnetic and Solar flux indices. The variable names are set according to the MSIS output.

>>> from datetime import datetime
>>> from nrlmsise00.dataset import msise_4d
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> lons = np.arange(-70., 71., 35.)  # = [-70, -35,  0, 35, 70] [°E]
>>> # broadcasting is done internally
>>> ds = msise_4d(datetime(2009, 6, 21, 8, 3, 20), alts, lats, lons)
>>> ds
<xarray.Dataset>
Dimensions:  (alt: 3, lat: 2, lon: 5, time: 1)
Coordinates:
  * time     (time) datetime64[ns] 2009-06-21T08:03:20
  * alt      (alt) float64 200.0 300.0 400.0
  * lat      (lat) float64 60.0 70.0
  * lon      (lon) float64 -70.0 -35.0 0.0 35.0 70.0
Data variables:
    He       (time, alt, lat, lon) float64 8.597e+05 1.063e+06 ... 4.936e+05
    O        (time, alt, lat, lon) float64 1.248e+09 1.46e+09 ... 2.635e+07
    N2       (time, alt, lat, lon) float64 2.555e+09 2.654e+09 ... 1.667e+06
    O2       (time, alt, lat, lon) float64 2.1e+08 2.062e+08 ... 3.471e+04
    Ar       (time, alt, lat, lon) float64 3.16e+06 3.287e+06 ... 76.55 67.16
    rho      (time, alt, lat, lon) float64 1.635e-13 1.736e-13 ... 7.984e-16
    H        (time, alt, lat, lon) float64 3.144e+05 3.02e+05 ... 1.237e+05
    N        (time, alt, lat, lon) float64 9.095e+06 1.069e+07 ... 6.765e+05
    AnomO    (time, alt, lat, lon) float64 1.173e-08 1.173e-08 ... 1.101e+04
    Texo     (time, alt, lat, lon) float64 805.2 823.7 807.1 ... 818.7 821.2
    Talt     (time, alt, lat, lon) float64 757.9 758.7 766.4 ... 818.7 821.1
    lst      (time, lon) float64 3.389 5.722 8.056 10.39 12.72
    Ap       (time) int32 6
    f107     (time) float64 66.7
    f107a    (time) float64 69.0

C model interface

The C submodule directly interfaces the model functions gtd7() and gtd7d() by importing nrlmsise00._nrlmsise00.

>>> from nrlmsise00._nrlmsise00 import gtd7, gtd7d
>>> # using the standard flags
>>> gtd7(2009, 172, 29000, 400, 60, -70, 16, 150, 150, 4)
([666517.690495152, 113880555.97522168, 19982109.255734544, 402276.3585712511, 3557.464994515886, 4.074713532757222e-15, 34753.12399717142, 4095913.2682930017, 26672.73209335869], [1250.5399435607994, 1241.4161300191206])

This module also provides "flat" variants of the C functions as gtd7_flat() and gtd7d_flat(). For example using gtd7() the same way as above:

>>> import numpy as np
>>> from nrlmsise00 import gtd7_flat
>>> alts = np.arange(200, 401, 100.)  # = [200, 300, 400] [km]
>>> lats = np.arange(60, 71, 10.)  # = [60, 70] [°N]
>>> # Using broadcasting, the output will be a 2 x 3 x 11 element array:
>>> gtd7_flat(2009, 172, 29000, alts[None, :], lats[:, None], -70, 16, 150, 150, 4)
array([[[1.55567936e+06, 2.55949597e+09, 4.00342724e+09, 1.74513806e+08,
         6.56916263e+06, 2.64872982e-13, 5.63405578e+04, 4.71893934e+07,
         3.45500931e-08, 1.25053994e+03, 1.02704994e+03],
        [9.58507714e+05, 4.66979460e+08, 2.31041924e+08, 6.58659651e+06,
         1.16566762e+05, 2.38399390e-14, 3.86535595e+04, 1.43755262e+07,
         1.03939126e+02, 1.25053994e+03, 1.20645403e+03],
        [6.66517690e+05, 1.13880556e+08, 1.99821093e+07, 4.02276359e+05,
         3.55746499e+03, 4.07471353e-15, 3.47531240e+04, 4.09591327e+06,
         2.66727321e+04, 1.25053994e+03, 1.24141613e+03]],
<BLANKLINE>
       [[1.31669842e+06, 2.40644124e+09, 4.21778196e+09, 1.89878716e+08,
         8.17662024e+06, 2.71788520e-13, 4.64192484e+04, 5.13265845e+07,
         5.21846603e-08, 1.24246351e+03, 1.04698385e+03],
        [8.22632403e+05, 4.52803942e+08, 2.53857090e+08, 7.50201654e+06,
         1.53431033e+05, 2.46179628e-14, 3.20594861e+04, 1.62651506e+07,
         1.59911615e+02, 1.24246351e+03, 1.20963726e+03],
        [5.73944168e+05, 1.10836468e+08, 2.19925518e+07, 4.58648922e+05,
         4.68600377e+03, 4.10277781e-15, 2.89330169e+04, 4.65636025e+06,
         4.12296154e+04, 1.24246351e+03, 1.23665288e+03]]])

Note

All functions require the solar 10.7 cm radio flux and and the geomagnetic Ap index values to produce correct results. In particular, according to the C source code:

  • f107A: 81 day average of F10.7 flux (centered on the given day of year)
  • f107: daily F10.7 flux for previous day
  • ap: magnetic index (daily)

The f107 and f107A values used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. The following site provides both classes of values (outdated): ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/

More up-to-date index files can be found at https://celestrak.com/SpaceData/, which are also provided by the spaceweather package.

f107, f107A, and ap effects are neither large nor well established below 80 km and these parameters should be set to 150., 150., and 4. respectively.

License

This python interface is free software: you can redistribute it or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2 (GPLv2), see local copy or online version.

The C source code of NRLMSISE-00 is in the public domain, see COPYING.NRLMSISE-00.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nrlmsise00-0.1.0.tar.gz (63.3 kB view details)

Uploaded Source

Built Distributions

nrlmsise00-0.1.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl (53.8 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.0-pp27-pypy_73-manylinux2010_x86_64.whl (53.7 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.0-cp38-cp38-manylinux2010_x86_64.whl (89.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.0-cp38-cp38-manylinux2010_i686.whl (82.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

nrlmsise00-0.1.0-cp38-cp38-manylinux1_x86_64.whl (89.0 kB view details)

Uploaded CPython 3.8

nrlmsise00-0.1.0-cp38-cp38-manylinux1_i686.whl (82.5 kB view details)

Uploaded CPython 3.8

nrlmsise00-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl (64.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nrlmsise00-0.1.0-cp37-cp37m-manylinux2010_x86_64.whl (90.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.0-cp37-cp37m-manylinux2010_i686.whl (83.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

nrlmsise00-0.1.0-cp37-cp37m-manylinux1_x86_64.whl (90.1 kB view details)

Uploaded CPython 3.7m

nrlmsise00-0.1.0-cp37-cp37m-manylinux1_i686.whl (83.5 kB view details)

Uploaded CPython 3.7m

nrlmsise00-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (64.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

nrlmsise00-0.1.0-cp36-cp36m-manylinux2010_x86_64.whl (89.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.0-cp36-cp36m-manylinux2010_i686.whl (82.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

nrlmsise00-0.1.0-cp36-cp36m-manylinux1_x86_64.whl (89.1 kB view details)

Uploaded CPython 3.6m

nrlmsise00-0.1.0-cp36-cp36m-manylinux1_i686.whl (82.6 kB view details)

Uploaded CPython 3.6m

nrlmsise00-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (64.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

nrlmsise00-0.1.0-cp35-cp35m-manylinux2010_x86_64.whl (88.9 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.0-cp35-cp35m-manylinux2010_i686.whl (82.3 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

nrlmsise00-0.1.0-cp35-cp35m-manylinux1_x86_64.whl (88.9 kB view details)

Uploaded CPython 3.5m

nrlmsise00-0.1.0-cp35-cp35m-manylinux1_i686.whl (82.3 kB view details)

Uploaded CPython 3.5m

nrlmsise00-0.1.0-cp35-cp35m-macosx_10_9_x86_64.whl (64.3 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

nrlmsise00-0.1.0-cp34-cp34m-manylinux1_x86_64.whl (70.6 kB view details)

Uploaded CPython 3.4m

nrlmsise00-0.1.0-cp34-cp34m-manylinux1_i686.whl (65.2 kB view details)

Uploaded CPython 3.4m

nrlmsise00-0.1.0-cp27-cp27mu-manylinux2010_x86_64.whl (87.7 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.0-cp27-cp27mu-manylinux2010_i686.whl (81.3 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

nrlmsise00-0.1.0-cp27-cp27mu-manylinux1_x86_64.whl (87.7 kB view details)

Uploaded CPython 2.7mu

nrlmsise00-0.1.0-cp27-cp27mu-manylinux1_i686.whl (81.3 kB view details)

Uploaded CPython 2.7mu

nrlmsise00-0.1.0-cp27-cp27m-manylinux2010_x86_64.whl (87.7 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

nrlmsise00-0.1.0-cp27-cp27m-manylinux2010_i686.whl (81.3 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

nrlmsise00-0.1.0-cp27-cp27m-manylinux1_x86_64.whl (87.7 kB view details)

Uploaded CPython 2.7m

nrlmsise00-0.1.0-cp27-cp27m-manylinux1_i686.whl (81.2 kB view details)

Uploaded CPython 2.7m

nrlmsise00-0.1.0-cp27-cp27m-macosx_10_9_x86_64.whl (64.2 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file nrlmsise00-0.1.0.tar.gz.

File metadata

  • Download URL: nrlmsise00-0.1.0.tar.gz
  • Upload date:
  • Size: 63.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0.tar.gz
Algorithm Hash digest
SHA256 9bd1e36f7292327f893a2313dbfa3be77554c4c70f8e2fdb132b8b10e9862c33
MD5 35e83fd725d9a243b21963aaa2dca66f
BLAKE2b-256 e1432a1dfa17ef23915c8b27829e30e020bf26dbee81b31b1094dffb2cde0a3b

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 53.8 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6cdb66cb8a4d8c84a58229aa187e751b2148db870c01c7d72be3997e87257078
MD5 33253819ca3df3665a865a08cc4499f5
BLAKE2b-256 42ce9dcd9cd0bc28ebc637c16df31a6082ddaccfc1574e58b23cc790faaefed8

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 53.8 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9f660ff0b932833891a6b4e78ffe3f4b044361b6d7dbb892bb39a911ccbc61cc
MD5 92676d61bcb7a39a0a9c604412dd9195
BLAKE2b-256 3505ab806cbda60b911021ad76d954d1d7827bb211a9978170b09602f75587f9

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 53.7 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ee0b70e5b9d679cd59e826918bad2930eeb321eba6c30f556b55ec1bc4b7ca27
MD5 9f9368375c38992c2a971592748ac1dd
BLAKE2b-256 8df2ccfa51afc173f96cea3d7ae106da1c95c74d26314c764a96270784dd20c8

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-pp27-pypy_73-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-pp27-pypy_73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 53.7 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-pp27-pypy_73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 638ab40a3cfc3aa7000d7980c1a55b74a41c7155b5699ff67c83b8fc0e785eee
MD5 1835eed3d272d51ec9a508f018e88f3c
BLAKE2b-256 061c0821645509d7f019142c3f4f95e5896b5f9b9b0dd1d6ca28b5d0d477f355

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 89.0 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ff4155dd220715f2e978f31e1c56283715b4a4a9086bccbca8af437b574f1c22
MD5 92a91f66b523752df51e2d43c3584826
BLAKE2b-256 e83bc3adbe319d1c12fce439919802e486062b73609b42ee6bd8885be6e14d8f

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 82.5 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b3825784db652f0840f171ac8c090b30ff40a039cec1004ff20ef43bb14bc44e
MD5 7a04ec1191c2d40e45c0c26f0648c518
BLAKE2b-256 50162375335ff54789ad795004774707f97407a9e72c8a0c5b802580d3cd63be

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 89.0 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 43caf8edefefc96213b22b329b2ca8be1748317c144aa067d76b725bfddf96b1
MD5 32fce31aedeb8e678e0a9519aace0103
BLAKE2b-256 bd913fe154c815523c102ac00676bbfb6d77b85ef66ad601be2b7aca898e429c

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 82.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9716e3cd72633769f9bb69018bf26b7b4f11cc013d09bd1f64e8b283663209a2
MD5 bcb50127a2f9dd39cf9cdf0f1fa0f226
BLAKE2b-256 b6fdc6fac12281723bb3aff0d3e555dd6492acb051a962e0954337ccf9d22786

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 64.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.4

File hashes

Hashes for nrlmsise00-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b5add1f813dbb47b51ca7ae4fb2956136a6d9aea9060cf58b58cd214f71cf77
MD5 e43f7a346941184d62c624524c1f9c86
BLAKE2b-256 61f4e3f4afe1510ed26d91d461af118fdaab3af334d46fac5b81c9f502ca3cb4

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 90.1 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 002ac23ce43be029d673d572626d091d328eafd3a0458cc816150b26a6a50a04
MD5 f228fa29fc37128dc609e2f22ddeed29
BLAKE2b-256 b8f7621a6550962f775792dea14c5753bc3f17397dd3b1bda244d499eb1ea029

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 83.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 aeedfc4061786d79809db9fc176ce53490fd25e5e9a1e07266c26699e7271655
MD5 9e227725200050ca343f618657fc543f
BLAKE2b-256 81b6af4d2e7a9ce1bfff39a1df54c773fe94027324cdd9dc181546a0308bddf2

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 90.1 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 42a96fa8b911fb460b6b8aad9a1eaa63e4aeb5f09eff4e2c998418f442801000
MD5 796e683baa847bc940c7097cf42d4252
BLAKE2b-256 9f54af0ecedc6dfd7a8240c291e7b6ee27a24e7633ca24414a3d6da5eaa710f8

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 83.5 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 dee09999f26398d895cb9a857bc141086b375e598e1b71f32c8da175ac085229
MD5 cb2133c5efde68774b2497eaab4ae778
BLAKE2b-256 1f3262d12309a40548351163afea2fa2ad9fc2839315feb6c88671d1ea931999

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 64.3 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.4

File hashes

Hashes for nrlmsise00-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f48bfe07d5c72e73674e5c1b626158724a80b805df2542b9d592f8ccf7fd11d6
MD5 e53a2bcca992eb4a0f4d86052b48848f
BLAKE2b-256 5180290607f43ef3f89e7f40c990c251d0419d34dbe661db4820ea6e298608a4

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 89.1 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a63c452e255a33208cfe91b595f24c0b94cc329d7b67d65ec34a095298a16ebd
MD5 4199711ab39515088aa039f634bbf333
BLAKE2b-256 d9bfe41a5cbcfb5849b83757c5dba17f7ea2ab3bcd3b13a5ee9661a38dedc364

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e984318246a1fb97d6678cf81de9189a5309a283d804cca96f18d75b22b3ecf5
MD5 3b9f10570e550d720718b550dae6037e
BLAKE2b-256 d2f8107d6d3ee73df40e22f495deae9d51a66c471ae5fae663e5599373a4062a

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 89.1 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 728d850f5c053fd9268f9eefd267216c69d4f5bbc1a5424ce565b64cf949247d
MD5 23421b360cb24b60e5377e138b96c96f
BLAKE2b-256 38ae9ab05e76ace28085f79a229b2956847600ad414f89bfe0698b8c51d61b89

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bd0e55d45a749b7254d9cb56df2de5742a8352f1daa66bec8dfc4b6259c5ac02
MD5 a80ed9431f853f30f54f2155f710a91b
BLAKE2b-256 a94ea9b83aa26d1b129cbeacf8ecdeb3ab4528417fa91ac1e439f65d813ac35e

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 64.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.4

File hashes

Hashes for nrlmsise00-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aad1c3cce2c3517580cfd35af23c43f75ddd660e45a810e35ec608ae133191fc
MD5 f92bc92c638282c4bea1139b0e4d966e
BLAKE2b-256 7d173b66c7c217a7d4517562bce7e3ea276a5ac833e44973f7460f27353de7bb

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 88.9 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1c8f003f80173ca17ab1edd35819231db1324067d482f8835fdc458320e5403a
MD5 bfe8d48a0aed76558b13c1164471c660
BLAKE2b-256 23ac8ef4621f32a9a15ff7a12042688d45d67126c779447afb01d52556341961

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8ebddf7b4628a3ec255db40a4bf3c0ebc18d072f8d04ec4a62cb24519b7fbf47
MD5 9cc9b66e6c3aedc9cc265a31deb9ebd0
BLAKE2b-256 c56cc7f1331645ee4f3b9a88b87357122f4573d08f06ff1f708fb70e027620d1

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 88.9 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e2cd101901665feb18521ddde4462ed2836af7163186f1aaed9c7d574a84444c
MD5 038f1013e3c499c58c45e6568cbff3d3
BLAKE2b-256 c61066a0601af3e929dec5539fbcc9d1b2ffcba71e2e123297b59522f9607200

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4a543cd44339c60302bb7cfc09734b7244d94289fa19e298c324660a81a6ed70
MD5 80c789e18e1c2f67e6dac78a757db936
BLAKE2b-256 a8f91a783769c4f6829727b8fd7dccaacb9b08e175a4df70f9fddec264a16c85

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 64.3 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.4

File hashes

Hashes for nrlmsise00-0.1.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82d99e55e50ff92123c2fa6cc93d08095fa0d6d79a8958601d5e03b1f1323866
MD5 fab4f275998d84e845d9249dcb5244a2
BLAKE2b-256 927a271c8e8c4ca6beecce14b8f4169e48524c525c18954d042c54490c65527f

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 70.6 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f2da7b13e1766baf6fa65e1afaf12efee0cd73f04696d2dd0d790fe1e3390169
MD5 acd8f4d6554d629bd0fa0d4fb70a1e89
BLAKE2b-256 dbc1d0c46445c34aa7a8239e23a3ce63ce9f2648d3cb3f59140a5b6822fd8881

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 65.2 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a67830a59c0ee2f5a48cf54d808d5ba04b9e38547aa953821ad16b17b15a39e8
MD5 d62af2413dd69becc46913f70ad26314
BLAKE2b-256 e9cd32cda014098c919604948408ab4e790fbdba59cc442cdad56c23eed0e55b

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 87.7 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7fb36b7802b62e4f27ca7f1cf4f27f28fb08c7154a617156da86f17a0fe7fa93
MD5 4cefca14011824f217d6192da66eb8ff
BLAKE2b-256 557e5f12f56f7e2bce93a82f88b077b5fa4c34bf2a8fdb824e62c9d407266822

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 81.3 kB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 546d6fdc53b024e23f53532114980f7fb0fb7947252faedad65391adea6ebd42
MD5 24dc68a0f6f049e9e2c4e9000a30f548
BLAKE2b-256 8bb2d617c25beaae1cbebd95f0d9f5eb7ab69978d3f74a1d66bf21ed8c447bd2

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 87.7 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cb640db184cb08711e6f95745bf6a19c893f8ed062c1b5e12d399a3697e4eef8
MD5 7c6d2c90ca513e885c73a9b83d4f2d96
BLAKE2b-256 2de4178262979be38dd01f9480f6ba2fbe33aa8c747a387f60e48f50d9ea6e03

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 81.3 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 31dad72a7f8fc80c83e8a264a414f00cbe32952bd8cbf175d7746eaee3689ab6
MD5 04409b127f07255e872a012096251752
BLAKE2b-256 cf90bdb627f18dbdb28573623b07eace0673a05c6183fdf0fd9e7bdc61369cb6

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 87.7 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 351380735e671cc031bb531d8355a0fa9d5c4fe9124659eb19facb352c27848e
MD5 623be1609b3478f8d8e38bd57b0b21a2
BLAKE2b-256 5899e5fbc297248052b2e61fdc618584d2db9196471db3980a5ebf76d5484380

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 81.3 kB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6dd89a8f03a6002a22f542b33ea5262c5d13378fc1ce7a181ee554043ea1c1d6
MD5 4082110e6e1fe57ddf61ce742627a29e
BLAKE2b-256 a89f386d6315c5f1b2cf20f45ecc7c9ea846d004b8864d837e3878073745eec4

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 87.7 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 eb0caa67fe68fe4cfbdecbb017e0cb10a768e4e2d53289a47f57a2c05ba2c263
MD5 ad6bb1ff68dbb533ec81464eaa41a90b
BLAKE2b-256 a314812485c8fa8dbda1e960b525ba0dd95a86d6e825c513f26d1d419b48cf6d

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 81.2 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.1

File hashes

Hashes for nrlmsise00-0.1.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 46e434ee22e338b6a1a3508ba9bbca463f06d0f4f0927e95cbe6206c40ca69cc
MD5 be69b5c501e3324183eb8d30e510d597
BLAKE2b-256 68291452f8087868b1471a91e4ad1c8daf6f78b34a37b7640c608666038e19e5

See more details on using hashes here.

File details

Details for the file nrlmsise00-0.1.0-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nrlmsise00-0.1.0-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 64.2 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.4

File hashes

Hashes for nrlmsise00-0.1.0-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc94023968b6400b8caeb2ad90f6aaee4e0914ffa3564515af3fc32e1c9f59b2
MD5 365d83f9adb708a61cb4ea60e2d836a6
BLAKE2b-256 f1864bd81eeb91b60d8755416c196732f0e5df6be443cbf1d9b5ea909faaf208

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page