Skip to main content

Pure Python client for Apache Kafka

Project description

https://img.shields.io/badge/kafka-2.3%2C%202.2%2C%202.1%2C%202.0%2C%201.1%2C%201.0%2C%200.11%2C%200.10%2C%200.9%2C%200.8-brightgreen.svg https://img.shields.io/pypi/pyversions/kafka-python.svg https://coveralls.io/repos/dpkp/kafka-python/badge.svg?branch=master&service=github https://travis-ci.org/dpkp/kafka-python.svg?branch=master https://img.shields.io/badge/license-Apache%202-blue.svg

Python client for the Apache Kafka distributed stream processing system. kafka-python is designed to function much like the official java client, with a sprinkling of pythonic interfaces (e.g., consumer iterators).

kafka-python is best used with newer brokers (0.9+), but is backwards-compatible with older versions (to 0.8.0). Some features will only be enabled on newer brokers. For example, fully coordinated consumer groups – i.e., dynamic partition assignment to multiple consumers in the same group – requires use of 0.9+ kafka brokers. Supporting this feature for earlier broker releases would require writing and maintaining custom leadership election and membership / health check code (perhaps using zookeeper or consul). For older brokers, you can achieve something similar by manually assigning different partitions to each consumer instance with config management tools like chef, ansible, etc. This approach will work fine, though it does not support rebalancing on failures. See <https://kafka-python.readthedocs.io/en/master/compatibility.html> for more details.

Please note that the master branch may contain unreleased features. For release documentation, please see readthedocs and/or python’s inline help.

>>> pip install kafka-python

KafkaConsumer

KafkaConsumer is a high-level message consumer, intended to operate as similarly as possible to the official java client. Full support for coordinated consumer groups requires use of kafka brokers that support the Group APIs: kafka v0.9+.

See <https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html> for API and configuration details.

The consumer iterator returns ConsumerRecords, which are simple namedtuples that expose basic message attributes: topic, partition, offset, key, and value:

>>> from kafka import KafkaConsumer
>>> consumer = KafkaConsumer('my_favorite_topic')
>>> for msg in consumer:
...     print (msg)
>>> # join a consumer group for dynamic partition assignment and offset commits
>>> from kafka import KafkaConsumer
>>> consumer = KafkaConsumer('my_favorite_topic', group_id='my_favorite_group')
>>> for msg in consumer:
...     print (msg)
>>> # manually assign the partition list for the consumer
>>> from kafka import TopicPartition
>>> consumer = KafkaConsumer(bootstrap_servers='localhost:1234')
>>> consumer.assign([TopicPartition('foobar', 2)])
>>> msg = next(consumer)
>>> # Deserialize msgpack-encoded values
>>> consumer = KafkaConsumer(value_deserializer=msgpack.loads)
>>> consumer.subscribe(['msgpackfoo'])
>>> for msg in consumer:
...     assert isinstance(msg.value, dict)
>>> # Access record headers. The returned value is a list of tuples
>>> # with str, bytes for key and value
>>> for msg in consumer:
...     print (msg.headers)
>>> # Get consumer metrics
>>> metrics = consumer.metrics()

KafkaProducer

KafkaProducer is a high-level, asynchronous message producer. The class is intended to operate as similarly as possible to the official java client. See <https://kafka-python.readthedocs.io/en/master/apidoc/KafkaProducer.html> for more details.

>>> from kafka import KafkaProducer
>>> producer = KafkaProducer(bootstrap_servers='localhost:1234')
>>> for _ in range(100):
...     producer.send('foobar', b'some_message_bytes')
>>> # Block until a single message is sent (or timeout)
>>> future = producer.send('foobar', b'another_message')
>>> result = future.get(timeout=60)
>>> # Block until all pending messages are at least put on the network
>>> # NOTE: This does not guarantee delivery or success! It is really
>>> # only useful if you configure internal batching using linger_ms
>>> producer.flush()
>>> # Use a key for hashed-partitioning
>>> producer.send('foobar', key=b'foo', value=b'bar')
>>> # Serialize json messages
>>> import json
>>> producer = KafkaProducer(value_serializer=lambda v: json.dumps(v).encode('utf-8'))
>>> producer.send('fizzbuzz', {'foo': 'bar'})
>>> # Serialize string keys
>>> producer = KafkaProducer(key_serializer=str.encode)
>>> producer.send('flipflap', key='ping', value=b'1234')
>>> # Compress messages
>>> producer = KafkaProducer(compression_type='gzip')
>>> for i in range(1000):
...     producer.send('foobar', b'msg %d' % i)
>>> # Include record headers. The format is list of tuples with string key
>>> # and bytes value.
>>> producer.send('foobar', value=b'c29tZSB2YWx1ZQ==', headers=[('content-encoding', b'base64')])
>>> # Get producer performance metrics
>>> metrics = producer.metrics()

Thread safety

The KafkaProducer can be used across threads without issue, unlike the KafkaConsumer which cannot.

While it is possible to use the KafkaConsumer in a thread-local manner, multiprocessing is recommended.

Compression

kafka-python supports gzip compression/decompression natively. To produce or consume lz4 compressed messages, you should install python-lz4 (pip install lz4). To enable snappy compression/decompression install python-snappy (also requires snappy library). See <https://kafka-python.readthedocs.io/en/master/install.html#optional-snappy-install> for more information.

Protocol

A secondary goal of kafka-python is to provide an easy-to-use protocol layer for interacting with kafka brokers via the python repl. This is useful for testing, probing, and general experimentation. The protocol support is leveraged to enable a KafkaClient.check_version() method that probes a kafka broker and attempts to identify which version it is running (0.8.0 to 2.3+).

Low-level

Legacy support is maintained for low-level consumer and producer classes, SimpleConsumer and SimpleProducer. See <https://kafka-python.readthedocs.io/en/master/simple.html?highlight=SimpleProducer> for API details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ns-kafka-python-1.4.7.tar.gz (291.1 kB view details)

Uploaded Source

Built Distribution

ns_kafka_python-1.4.7-py2.py3-none-any.whl (266.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ns-kafka-python-1.4.7.tar.gz.

File metadata

  • Download URL: ns-kafka-python-1.4.7.tar.gz
  • Upload date:
  • Size: 291.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.4

File hashes

Hashes for ns-kafka-python-1.4.7.tar.gz
Algorithm Hash digest
SHA256 3886c65496cd997095f6a3a058f6cc7dd95138bfa9f1acabd769250184ca51c9
MD5 8396df04ba7350c28f3686cc373657da
BLAKE2b-256 86508c3ef1492ff8644552c3e7371610796939689ed56f71e3502fd704099350

See more details on using hashes here.

File details

Details for the file ns_kafka_python-1.4.7-py2.py3-none-any.whl.

File metadata

  • Download URL: ns_kafka_python-1.4.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 266.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.4

File hashes

Hashes for ns_kafka_python-1.4.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a0419d0326e2e61d5f5b4ac72e84ca0002f6a043c974289147ad2872971f28ba
MD5 b2ad53d6d2b9b4339aa9aa09cb7b9760
BLAKE2b-256 7d806b3bdea09a575a28b46c9bef766fdf0640166bb010e161ee35c533e961a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page