Skip to main content

A Library for Manipulating Progressions or Sequences

Project description

NSequence

NSequence is a Python library designed for handling progressions or sequences. It allows users to define sequences through functional expressions, and offers capabilities for various computations.

Key Features

  • Versatile Sequence Handling: NSequence supports every type of sequence, as long as it can be expressed with a unary function.

  • Error Handling: The library includes robust error handling for scenarios such as arity mismatches, unexpected positions or indices, inversion errors, and index not found situations.

  • Custom Indexing: Users can define custom indexing functions to map sequence positions to unique indices, accommodating sequences with non-standard progressions or skipped elements. This feature enhances the library's versatility in sequence management.

  • Inverse Functionality: For invertible sequences, NSequence facilitates finding the index of a given term and vice versa and provides various operations based on the inversion.

  • Nearest Term Search: NSequence allows you to find the index of the nearest term to a given value in the sequence. It provides flexibility in handling tie-breakers and preferences.

  • Iterator Protocol Support: NSequence supports the iterator protocol, allowing seamless iteration over sequence elements.

  • Sequence Protocol Support: NSequence adheres to the sequence protocol, ensuring compatibility with other Python sequences and enabling familiar operations such as indexing and slicing.

Installation

You can install NSequence using pip:

pip install nsequence

Testing

You can install the dependencies to run the tests using pip:

pip install nsequence[dev]

Getting Started

from NSequence import NSequence

def my_function(x):
    # Do something with x and return what you want
    # ...
    return x * 2

# Create your sequence
my_sequence = NSequence(func=my_function)

# Use the sequence functionalities
term_3 = my_sequence.nth_term(3)
sum_first_5_terms = my_sequence.sum_up_to_nth_term(5)
# Create a linear sequence: f(x) = 2x + 3
linear_sequence = NSequence(func=lambda x: 2 * x + 3)

# Compute the 5th term
term_5 = linear_sequence.nth_term(5)

# Find the index of the term 13
index_of_13 = linear_sequence.index_of_term(13)

# Calculate the sum of the first 10 terms
sum_first_10_terms = linear_sequence.sum_up_to_nth_term(10)
# Create a quadratic sequence: f(x) = x^2 + 3
quadratic_sequence = NSequence(func=lambda x: x ** 2 + 3)

# Get the nearest term to 20
nearest_term_to_20 = quadratic_sequence.nearest_term(20)

# Count the terms between 10 and 50
count_terms_between_10_and_50 = quadratic_sequence.count_terms_between_terms(10, 50)
# Create an invertible sequence with inverse function
invertible_sequence = NSequence(func=lambda x: 2 * x, inverse_func=lambda y: y / 2)

# Find the index of the term 8
index_of_8 = invertible_sequence.index_of_term(8)

# Compute the terms between indices 5 and 10
terms_between_5_and_10 = invertible_sequence.terms_between_indices(5, 10)

Real-world Usage

Imagine you're developing a complex event reminder system, where specific data could be attached to each reminder. You don't want to save in db, reminders to which the user hasn't attached any specific data (you're seeing it as resource waste). But, for forecasting and planning purposes, you want to be able to retrieve for a given event recall data (or metadata inferred from the related event) for a given period in the past (or future).

The set of reminders can be conceptualized as a mathematical sequence, where each term represents a distinct instance of the scheduled event reminder.

Consider an event requiring reminders every F hours starting from a date D. We can establish a direct mathematical relationship between each reminder instance and its timing. And we can then define the reminder sequence using the formular R(n) = D + F*(n-1) or R(n) = (D-F) + F*n, where R(n) represents the n-th reminder date.

NSequence can be utilized to enhance your code's capabilities in solving the previous problem by leveraging the available methods.

from datetime import datetime, timedelta
from nsequence import NSequence

# Define start date and frequency in hours
start_date = datetime(2024, 1, 1)
frequency_hours = timedelta(hours=2)

# Define the reminder function using the R(n) formula
def reminder_func(n):
    # R(n) = start_date + frequency_hours * (n-1)
    return start_date + frequency_hours * (n-1)

def reminder_inverse_func(reminder_date):
    return (reminder_date - start_date + frequency_hours) / frequency_hours

# Initialize NSequence with the reminder function
reminder_sequence = NSequence(
    func=reminder_func, 
    # Set initial_index to 1
    initial_index=1, 
    inverse_func=reminder_inverse_func
)

# Example: Get the 5th reminder date
fifth_reminder_date = reminder_sequence.nth_term(5)
print(f"The 5th reminder is scheduled for: {fifth_reminder_date}")

# Example: Get the reminders scheduled between two different dates
date1 = datetime(2024, 1, 1)
date2 = datetime(2024, 2, 4)

scheduled_reminders_between_dates = reminder_sequence.terms_between_terms(date1, date2)
print(f"The scheduled reminder between {date1} and {date2} are: {scheduled_reminders_between_dates}")

# See bellow for more methods available
  • NSequence has custom indexing support to handle more complex sequence definition.

  • Inheritance can be used to override the default methods if the default implementation does not suit your needs especially in the cases where the return type of the sequence's function is not float.

Key Methods

The concept's image


Constructor .i.e __init__

Initializes a new sequence instance.

Parameters

  • func: The primary function defining the sequence. This function must accept an integer position and return the corresponding sequence term.

  • inverse_func: An optional inverse function for func, allowing for the computation of positions or indices based on sequence term values.

  • indexing_func: An optional function that maps sequence positions to custom indices, enabling non-standard indexing schemes.

  • indexing_inverse_func: The inverse of indexing_func, allowing for the determination of sequence positions from indices.

  • initial_index: The starting index for the sequence, defaults to 0. This parameter is ignored if indexing_func is provided, as the initial index will then be derived from the indexing function.

  • position_limit An optional limit to the number of positions available in the sequence .i.e the length of the sequence. Defaults to 1,000,000.

Raises

  • ArityMismatchError: Raised if the provided function does not accept exactly one argument.
  • TypeError: Raised if the provided argument is not a callable function.

nth_term

Computes the sequence term at the given position.

Parameters

  • position: Position in the sequence to calculate the term for.

position_of_index

Determines the sequence position of a given index, useful when custom indexing is used.

Parameters

  • index: The index for which to find the corresponding sequence position.

Raises

  • IndexNotFoundError: Raised if the user provides custom indexing function and the index is not found sequence's position_limit.

nearest_entry

Finds the nearest sequence entry (both the index and the term) to a given term.

Parameters

  • term_neighbor: The term to find the nearest sequence entry for.
  • inversion_technic: Whether to use the inversion technique for finding the nearest term.
  • starting_position: The starting position for the iterative search (ignored if inversion_technic is True).
  • iter_limit: The maximum number of iterations for the search (ignored if inversion_technic is True).
  • prefer_left_term: Preference for the left term in case of equidistant terms.

Raises

  • NotImplementedError: Raised if the calculation fails, due to TypeError, ValueError or ArithmeticError.

nearest_term_index

Finds the index of the nearest term to a given value in the sequence.

Parameters

  • term_neighbor: The value to find the nearest sequence term to.
  • inversion_technic: Whether to use the inversion technique for finding the nearest term.
  • starting_position: The starting position for the iterative search (ignored if inversion_technic is True).
  • iter_limit: The maximum number of iterations for the search (ignored if inversion_technic is True).
  • prefer_left_term: Preference for the left term in case of equidistant terms.

Raises

  • NotImplementedError: Raised if the calculation fails, due to TypeError, ValueError or ArithmeticError.

nearest_term

Retrieves the term in the sequence that is nearest to a specified value.

Parameters

  • term_neighbor: The value to find the nearest sequence term for.
  • inversion_technic: Whether to use the inversion technique for finding the nearest term.
  • starting_position: The starting position for the iterative search (ignored if inversion_technic is True).
  • iter_limit: The maximum number of iterations for the search (ignored if inversion_technic is True).
  • prefer_left_term: Preference for the left term in case of equidistant terms.

Raises

  • NotImplementedError: Raised if the calculation fails, due to TypeError, ValueError or ArithmeticError.
  • InversionError: Raised if inversion_technic is set to True and the sequence does not have inverse_func.

count_terms_between_terms_neighbors

Counts the number of terms located between the nearest terms to two specified values. This method is particularly useful for sequences where each term has a unique and identifiable neighbor, allowing for the counting of terms that lie directly between two specific values.

Parameters

  • term_neighbor1: The first value. This method finds the nearest term to this value that does not prefer the left term, effectively preferring the right or equal term.
  • term_neighbor2: The second value. The value of the second neighbor. Unlike for term_neighbor1, this method finds the nearest term to this value that prefers the left term, if such a term exists.

terms_between_terms

Computes a list of sequence terms located between two given terms, inclusive.

Parameters

  • term1: The first term.
  • term2: The second term.

Raises

  • InversionError: Raised if inverse_func is not defined.
  • ValueError: Raised if calculated indices are not valid or if term1_index or term2_index are not integers.

sum_up_to_nth_term

Calculates the sum of the sequence up to the nth term.

Parameters

  • n: The position up to which the sum is to be calculated. Must be a positive integer.

index_of_term

Returns the sum of the sequence up to the nth term.

Parameters

  • term: The sequence term to find the index for.
  • inversion_technic: If True and no inverse function is provided, uses a brute-force search to find the index. Defaults to True.
  • exact_exception: If True, raises an exception if the term does not exactly match any sequence term. Defaults to True.

Raises

  • InversionError: Raised if inversion_technic is True and no inverse function is provided.
  • ValueError: Raised if exact_exception is True and the term is not found in the sequence.

count_terms_between_indices

Counts the number of terms between two indices in the sequence.

Parameters

  • index1: The starting index.
  • index2: The ending index.

count_terms_between_terms

Counts the number of terms between two given terms in the sequence. It uses the sequence's inverse function.

This method is meaningful for sequences where a bijective (one-to-one and onto) relationship exists between terms and their indices.

Parameters

  • term1: The first term in the sequence.
  • term2: The second term in the sequence.

Raises

  • InversionError: Raised if an inverse function has not been defined or is not applicable, indicating that term indices cannot be accurately determined.

Properties

initial_index

The initial index provided while creating the sequence.

initial_term

The initial term of the sequence.

position_limit

The actual length of the sequence.

More

The support for Iterator and Sequence Protocol allows you to do things like this:

my_sequence = NSequence(func=lambda x: x**3 + 4, position_limit=20)

# Print each element/term of the sequence
for term in my_sequence:
    print(term)

# Slice to get a range of terms
print(my_sequence[start:end:step])

Read about Iterator protocol here and Sequence protocol here.


Authors

Feel free to contribute, report issues, or suggest enhancements. Did you know that sequences are everywhere 🤔? Happy sequencing! 📈

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nsequence-0.1.8.tar.gz (33.6 kB view details)

Uploaded Source

Built Distribution

nsequence-0.1.8-py3-none-any.whl (22.9 kB view details)

Uploaded Python 3

File details

Details for the file nsequence-0.1.8.tar.gz.

File metadata

  • Download URL: nsequence-0.1.8.tar.gz
  • Upload date:
  • Size: 33.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for nsequence-0.1.8.tar.gz
Algorithm Hash digest
SHA256 85815622e33a7cb59dd0942c578a471edb53b7880a347819372b26ebeb3b083d
MD5 6e33f3fe005a08cc68ff636dc023546b
BLAKE2b-256 52dec75ddf6eeea7aa865ef9e64eecef4ad190492990fe986ff76b3c99f0256a

See more details on using hashes here.

File details

Details for the file nsequence-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: nsequence-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 22.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for nsequence-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 b82984dafa09979e763bfe34c3c066748462a4e19b65bc072c756c727ffec7ca
MD5 e95ecb80dfbbd9689fe98b36883db421
BLAKE2b-256 5c9c41b552245f406058c2291cb27dd7084d0b0698414d8cf47754426f62662a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page