Skip to main content

Python package to compute n-Shapley Values.

Project description

Welcome to the nshap Package!

Shapley Values

This is a python package to compute interaction indices that extend the Shapley Value. It accompanies the AISTATS'23 paper From Shapley Values to Generalized Additive Models and back by Sebastian Bordt and Ulrike von Luxburg.

PyPi package version sphinx documentation for latest release tests License: MIT

The package supports, among others,

The package works with arbitrary user-defined value functions. It also provides a model-agnostic implementation of the interventional SHAP value function.

The computed interaction indices are an estimate that can be inaccurate, especially if the order of the interaction is large.

Documentation is available at https://tml-tuebingen.github.io/nshap.

⚠️ Disclaimer

This package does not provide an efficient way to compute Shapley Values. For this you should refer to the shap package or approaches like FastSHAP. In practice, the current implementation works for arbitrary functions of up to ~10 variables. This package should be used for research purposes only.

Setup

To install the package run

pip install nshap

Computing Interaction Indices

Let's assume that we have trained a Gradient Boosted Tree on the Folktables Income data set.

gbtree = xgboost.XGBClassifier()
gbtree.fit(X_train, Y_train)
print(f'Accuracy: {accuracy_score(Y_test, gbtree.predict(X_test)):0.3f}')

Accuracy: 0.806

Now we want to compute an interaction index. This package supports interaction indices that extend the Shapley Value. This means that the interaction index is based on a value function, just as the Shapley Value. So we need to define a value function. We can use the function nshap.vfunc.interventional_shap, which approximates the interventional SHAP value function.

import nshap

vfunc = nshap.vfunc.interventional_shap(gbtree.predict_proba, X_train, target=0, num_samples=1000)

The function takes 4 arguments

  • The function that we want to explain
  • The training data or another sample from the data distribution
  • The target class (required here since 'predict_proba' has 2 outputs).
  • The number of samples that should be used to estimate the expectation (Default: 1000)

Equipped with a value function, we can compute different kinds of interaction indices. We can compute n-Shapley Values

n_shapley_values = nshap.n_shapley_values(X_test[0, :], vfunc, n=10)

the Shapley-Taylor interaction index

shapley_taylor = nshap.shapley_taylor(X_test[0, :], vfunc, n=10)

or the Faith-Shap interaction index of order 3

faith_shap = nshap.shapley_taylor(X_test[0, :], vfunc, n=3)

Functions that compute interaction indices have a common interface. They take 3 arguments

  • The data point for which we want to compute the explanation
  • The value function
  • The order of the interaction index

All functions return an object of type InteractionIndex. This is a python dict with some added functionallity.

To get the interaction effect between features 2 and 3, simply call

n_shapley_values[(2,3)]

0.0074

To visualize an interaction index, call

n_shapley_values.plot(feature_names = feature_names)

10-Shapley Values

This works for all interaction indices

faith_shap.plot(feature_names = feature_names)

10-Shapley Values

For n-Shapley Values, we can compute interaction indices of lower order from those of higher order

n_shapley_values.k_shapley_values(2).plot(feature_names = feature_names)

2-Shapley Values

We can also compute the original Shapley Values and plot them with the plotting functions from the shap package.

shap.force_plot(vfunc(X_test[0,:], []), n_shapley_values.shapley_values())

Shapley Values

Let us compare our result to the Shapley Values from the KernelSHAP Algorithm.

import shap

explainer = shap.KernelExplainer(gbtree.predict_proba, shap.kmeans(X_train, 25))
shap.force_plot(explainer.expected_value[0], shap_values[0])

Shapley Values

There are differences which is not surprising since the KernelSHAP algorithm only approximates the Shapley Values.

Overview of the package

Computing Interaction Indices

The package has a separate function for the computation of each interaction index.

  • n_shapley_values(X, v_func, n=-1) for $n$-Shapley Values.
  • shapley_taylor(X, v_func, n=-1) for the Faith-Shap Interaction Index.
  • faith_shap(X, v_func, n=-1) for the Faith-Shap Interaction Index.

and so on. The parameters for all of these function are

  • x: A singe data point for which to compute the interaction index (numpy.ndarray)

  • v_func: A value function, the basic primitive in the computation of all computations (see below on how to define custom value functions)

  • n, the desired order of the interaction index. Defaults to the number of features (complete functional decomposition or Shapley-GAM).

These function an object of type InteractionIndex.

The InteractionIndex class

The InteractionIndex class is a python dict with some added functionallity. It supports the following operations.

  • The individual attributions can be indexed with tuples of integers. For example, indexing with (0,) returns the main effect of the first feature. Indexing with (0,1,2) returns the interaction effect between features 0, 1 and 2.

  • plot() generates the plots described in the paper.

  • sum() sums the individual attributions (this does usually sum to the function value minus the value of the empty coalition)

  • save(fname) serializes the object to json. Can be loaded from there with nshap.load(fname). This can be useful since computing $n$-Shapley Values takes time, so you might want to compute them in parallel in the cloud, then aggregate the results for analysis.

Some function can only be called certain interaction indices:

  • k_shapley_values(k) computes the $k$-Shapley Values using the recursive relationship among $n$-Shapley Values of different order (requires $k\leq n$). Can only be called for $n$-Shapley Values.

  • shapley_values() returns the associated original Shapley Values as a list. Useful for compatiblity with the shap package.

Definig Value Functions

A value function has to follow the interface v_func(x, S) where x is a single data point (a numpy.ndarray) and S is a python list with the indices the the coordinates that belong to the coaltion.

In the introductory example with the Gradient Boosted Tree,

vfunc(x, [])

returns the expected predicted probability that an observation belongs to class 0, and

vfunc(x, [0,1,2,3,4,5,6,7,8,9])

returns the predicted probability that the observation x belongs to class 0 (note that the problem is 10-dimensional).

Implementation Details

At the moment all functions computes interaction indices simply via their definition. Independent of the order n of the $n$-Shapley Values, this requires to call the value function v_func once for all $2^d$ subsets of coordinates. Thus, the current implementation provides no essential speedup for the computation of $n$-Shapley Values of lower order.

The function nshap.vfunc.interventional_shap approximates the interventional SHAP value function by intervening on the coordinates of randomly sampled points from the data distributions.

Accuray of the computed interaction indices

The computed $n$-Shapley Values are an estimate which can be inaccurate.

The estimation error depends on the precision of the value function. With the provided implementation of the interventional SHAP value function, the precision depends on the number of samples used to estimate the expectation.

A simple way to test whether your result is precisely estimated to increase the number of samples (the num_samples parameter of nshap.vfunc.interventional_shap) and see if the result changes.

For more details, check out the discussion in Section 8 of our paper.

Replicating the Results in our Paper

The folder notebooks\replicate-paper contains Jupyter Notebooks that allow to replicated the results in our paper.

  • The notebooks figures.ipynb and checkerboard-figures.ipynb generate all the figures in the paper.
  • The notebook estimation.ipynb provides the estimation example with the kNN classifier on the Folktables Travel data set that we discuss in Appendix Section B.
  • The notebook hyperparameters.ipynb cross-validates the parameter $k$ of the kNN classifier.
  • The notebooks compute.ipynb, compute-vfunc.ipynb, checkerboard-compute.ipynb and checkerboard-compute-million.ipynb compute the different $n$-Shapley Values. You do not have to run these notebooks, the pre-computed results can be downloaded here.

⚠️ Important

You have use version 0.1.0 of this package in order to run the notebooks that replicate the results in the paper.

pip install nshap=0.1.0

Citing nshap

If you use this software in your research, we encourage you to cite our paper.

@article{bordtlux2022,
  title={From Shapley Values to Generalized Additive Models and back},
  author={Bordt, Sebastian and von Luxburg, Ulrike},
  url = {https://arxiv.org/abs/2209.04012},
  publisher = {AISTATS},
  year = {2023},
}

If you use interaction indices that were introduced in other works, such as Shapley Taylor or Faith-Shap, you should also consider to cite the respective papers.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nshap-0.2.0.tar.gz (18.4 kB view details)

Uploaded Source

Built Distribution

nshap-0.2.0-py3-none-any.whl (15.6 kB view details)

Uploaded Python 3

File details

Details for the file nshap-0.2.0.tar.gz.

File metadata

  • Download URL: nshap-0.2.0.tar.gz
  • Upload date:
  • Size: 18.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for nshap-0.2.0.tar.gz
Algorithm Hash digest
SHA256 35cd2f770c2a10b0cd3124636751ddd6968d30526ada537f4c6dc4db9789d72a
MD5 c64f2ba537c11b495ea0ff4d85e13f04
BLAKE2b-256 98a10e5be6fc772cb14bc587b369fa83eca81727eb69b637310d9ecbc7850b35

See more details on using hashes here.

File details

Details for the file nshap-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: nshap-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 15.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for nshap-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 92b7a06d65b74a76dcb7a09b6a72f372ef6a2f1b6714e93b4b7f0da19c7546e5
MD5 99f7078c64bf85e858aa1b07b6642684
BLAKE2b-256 e282db22a79aa212c0c6613b8270bca9f4e7b9dc26d06ff8727592e91422ff22

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page