The NTCIR Math Density Estimator package uses datasets, and judgements in the NTCIR-11 Math-2, and NTCIR-12 MathIR XHTML5 format to compute density, and probability estimates.
Project description
NTCIR Math Density Estimator – Estimates relevance of documents based on data from NTCIR Math tasks
NTCIR Math Density Estimator is a Python 3 command-line utility that uses
datasets, and judgements in the NTCIR-11 Math-2, and
NTCIR-12 MathIR XHTML5 format to compute density, and
probability estimates. Most importantly, the package estimates the probability
P(relevant | position)
, where position
is a position of a paragraph in a
document.
Usage
Installing
The package can be installed by executing the following command:
$ pip install ntcir-math-density
Displaying the usage
Usage information for the package can be displayed by executing the following command:
$ ntcir-math-density --help
usage: ntcir-math-density [-h] [--datasets DATASETS [DATASETS ...]]
[--judgements JUDGEMENTS [JUDGEMENTS ...]]
[--plots PLOTS [PLOTS ...]] [--positions POSITIONS]
[--estimates ESTIMATES] [--num-workers NUM_WORKERS]
Use datasets, and judgements in NTCIR-11 Math-2, and NTCIR-12 MathIR XHTML5
format to compute density, and probability estimates.
optional arguments:
-h, --help show this help message and exit
--datasets DATASETS [DATASETS ...]
Paths to the directories containing the datasets. Each
path must be prefixed with a unique single-letter
label followed by an equals sign (e.g. "A=/some/path").
--judgements JUDGEMENTS [JUDGEMENTS ...]
Paths to the files containing relevance judgements.
Each path must be prefixed with a single-letter label
corresponding to the judged dataset followed by a
semicolon (e.g. "A:/some/path/judgement.dat").
--plots PLOTS [PLOTS ...]
The path to the files, where the probability
estimates will plotted. When no datasets are
specified, the estimates file will be loaded.
--positions POSITIONS
The path to the file, where the estimated positions of
all paragraph identifiers from all datasets will be
stored. Defaults to positions.pkl.gz.
--estimates ESTIMATES
The path to the file, where the density, and
probability estimates will be stored. When no
datasets are specified, this file will be loaded to
provide the estimates for plotting. Defaults to
estimates.pkl.gz.
--num-workers NUM_WORKERS
The number of processes that will be used for
processing the datasets, and for computing the
density, and probability estimates. Defaults to 1.
Extracting estimates
The following command extracts density, and probability estimates and plots the estimates using 64 worker processes:
$ ntcir-math-density --num-workers 64 \
> --datasets A=ntcir-10-converted B=ntcir-11-12 \
> --judgements A:NTCIR_10_Math-qrels_fs-converted.dat A:NTCIR_10_Math-qrels_ft-converted.dat \
> B:NTCIR11_Math-qrels.dat B:NTCIR12_Math-qrels_agg.dat \
> B:NTCIR12_Math_simto-qrels_agg.dat \
> --estimates estimates.pkl.gz --positions positions.pkl.gz \
> --plots plot.pdf plot.svg
Retrieving judged paragraph identifiers, and scores from NTCIR_10_Math-qrels_fs-converted.dat
100%|█████████████████████████████████████████████████████| 2129/2129 [00:00<00:00, 334959.05it/s]
Retrieving judged paragraph identifiers, and scores from NTCIR_10_Math-qrels_ft-converted.dat
100%|█████████████████████████████████████████████████████| 1425/1425 [00:00<00:00, 353201.94it/s]
Retrieving judged paragraph identifiers, and scores from NTCIR11_Math-qrels.dat
100%|█████████████████████████████████████████████████████| 2500/2500 [00:00<00:00, 343345.12it/s]
Retrieving judged paragraph identifiers, and scores from NTCIR12_Math-qrels_agg.dat
100%|█████████████████████████████████████████████████████| 4251/4251 [00:00<00:00, 342252.50it/s]
Retrieving judged paragraph identifiers, and scores from NTCIR12_Math_simto-qrels_agg.dat
100%|█████████████████████████████████████████████████████| 654/654 [00:00<00:00, 314428.57it/s]
Retrieving all paragraph identifiers, and positions from ntcir-10-converted
get_all_identifiers(ntcir-10-converted): 5405167it [04:30, 19946.57it/s]
get_all_positions(ntcir-10-converted): 100%|█████████| 5405167/5405167 [08:44<00:00, 10306.72it/s]
Retrieving all paragraph identifiers, and positions from ntcir-11-12
get_all_identifiers(ntcir-11-12): 8301578it [08:08, 16985.19it/s]
get_all_positions(ntcir-11-12): 100%|█████████████████| 8301578/8301578 [44:30<00:00, 3108.88it/s]
1043 / 3146 / 5405167 relevant / judged / total identifiers in dataset ntcir-10-converted
1742 / 7059 / 8301578 relevant / judged / total identifiers in dataset ntcir-11-12
Pickling positions.pkl.gz
Fitting density, and probability estimators
Fitting prior p(position) density estimator
Fitting conditional p(position | relevant) density estimator
Computing density, and probability estimates
p(position): 100%|████████████████████████████████████████████████| 64/64 [01:19<00:00, 1.24s/it]
p(position | relevant): 100%|█████████████████████████████████████| 64/64 [01:19<00:00, 1.24s/it]
Pickling estimates.pkl.gz
Plotting plot.svg
Plotting plot.pdf
The following command extracts density, and probability estimates using 64 worker processes:
$ ntcir-math-density --num-workers 64 \
> --datasets A=ntcir-10-converted B=ntcir-11-12 \
> --judgements A:NTCIR_10_Math-qrels_fs-converted.dat A:NTCIR_10_Math-qrels_ft-converted.dat \
> B:NTCIR11_Math-qrels.dat B:NTCIR12_Math-qrels_agg.dat \
> B:NTCIR12_Math_simto-qrels_agg.dat \
> --estimates estimates.pkl.gz --positions positions.pkl.gz
Retrieving judged paragraph identifiers, and scores from NTCIR_10_Math-qrels_fs-converted.dat
100%|█████████████████████████████████████████████████████| 2129/2129 [00:00<00:00, 334959.05it/s]
Retrieving judged paragraph identifiers, and scores from NTCIR_10_Math-qrels_ft-converted.dat
100%|█████████████████████████████████████████████████████| 1425/1425 [00:00<00:00, 353201.94it/s]
Retrieving judged paragraph identifiers, and scores from NTCIR11_Math-qrels.dat
100%|█████████████████████████████████████████████████████| 2500/2500 [00:00<00:00, 343345.12it/s]
Retrieving judged paragraph identifiers, and scores from NTCIR12_Math-qrels_agg.dat
100%|█████████████████████████████████████████████████████| 4251/4251 [00:00<00:00, 342252.50it/s]
Retrieving judged paragraph identifiers, and scores from NTCIR12_Math_simto-qrels_agg.dat
100%|█████████████████████████████████████████████████████| 654/654 [00:00<00:00, 314428.57it/s]
Retrieving all paragraph identifiers, and positions from ntcir-10-converted
get_all_identifiers(ntcir-10-converted): 5405167it [04:30, 19946.57it/s]
get_all_positions(ntcir-10-converted): 100%|█████████| 5405167/5405167 [08:44<00:00, 10306.72it/s]
Retrieving all paragraph identifiers, and positions from ntcir-11-12
get_all_identifiers(ntcir-11-12): 8301578it [08:08, 16985.19it/s]
get_all_positions(ntcir-11-12): 100%|█████████████████| 8301578/8301578 [44:30<00:00, 3108.88it/s]
1043 / 3146 / 5405167 relevant / judged / total identifiers in dataset ntcir-10-converted
1742 / 7059 / 8301578 relevant / judged / total identifiers in dataset ntcir-11-12
Pickling positions.pkl.gz
Fitting density, and probability estimators
Fitting prior p(position) density estimator
Fitting conditional p(position | relevant) density estimator
Computing density, and probability estimates
p(position): 100%|████████████████████████████████████████████████| 64/64 [01:19<00:00, 1.24s/it]
p(position | relevant): 100%|█████████████████████████████████████| 64/64 [01:19<00:00, 1.24s/it]
Pickling estimates.pkl.gz
The following command plots the estimates using 64 worker processes:
$ ntcir-math-density --num-workers 64 \
> --estimates estimates.pkl.gz --plots plot.pdf plot.svg
Unpickling estimates.pkl.gz
Plotting plot.svg
Plotting plot.pdf
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ntcir_math_density-0.2.1.tar.gz
.
File metadata
- Download URL: ntcir_math_density-0.2.1.tar.gz
- Upload date:
- Size: 8.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5de8575681e1a2e262e64999c2ee7538e9b2a104acc1b9378e7fa6adb92bae7e |
|
MD5 | 6413b92a46eba592b16abc8cd9a78fed |
|
BLAKE2b-256 | 89e190d88979697571374916d3bd4e0e2e07a8180918813ff3f4ba308ff402d1 |
File details
Details for the file ntcir_math_density-0.2.1-py2.py3-none-any.whl
.
File metadata
- Download URL: ntcir_math_density-0.2.1-py2.py3-none-any.whl
- Upload date:
- Size: 10.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6a66439d57a7a08c16cc9c0bf3b79d5104693a4001aaf06306291836bfffb8b3 |
|
MD5 | e9755e5c250541e590a14d0c8cdc5bda |
|
BLAKE2b-256 | 18e02b833f6fe87f0edd88e31eab4bb246f3ef3699b808ed9ae6cc86da6b2b49 |