This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Overview

python-ntpdshm provides a Python interface to ntpd’s shared memory driver 28. A single class NtpdShm exposes the fields of the shared memory structure as attributes that can be read and written. In addition there are properties to set the clock and receive timestamps from float values. There is also a convenience update() function for setting the time related fields in a single step.

python-ntpdshm is implemented using Swig.

python-ntpdshm works with the following Python versions.

  • Python 2.6
  • Python 2.7
  • Python 3.3
  • Python 3.4
  • Python 3.5
  • PyPy (but not PyPy3!)

Example

import ntpdshm

ntpd_shm = ntpdshm.NtpdShm(unit=0)

The members of the C struct can be accessed by their original names. These have not been converted into PEP-8 compliant names.

print ntpd_shm.mode
print ntpd_shm.clockTimeStampSec
print ntpd_shm.clockTimeStampUSec
print ntpd_shm.clockTimeStampNSec      # only ntpd 4.2.7p303 or later, probably random value otherwise
print ntpd_shm.receiveTimeStampSec
print ntpd_shm.receiveTimeStampUSec
print ntpd_shm.receiveTimeStampNSec    # only ntpd 4.2.7p303 or later, probably random value otherwise
print ntpd_shm.leap
print ntpd_shm.precision
print ntpd_shm.valid

In addition there are two pseudo properties that combine the second and microsecond attributes into “float” timestamps. These don’t support nanosecond precision as (as far as I know) it is not possible to detect whether ntpd does support nanosecond resolution.

print ntpd_shm.clockTimeStamp          # clockTimeStampSec.clockTimeStampUSec
print ntpd_shm.receiveTimeStamp        # receiveTimeStampSec.receiveTimeStampUSec

The process to feed ntpd an external reference time is shown below.

import time

clock_time = get_clock_time()          # `get_clock_time` must be implemented somewhere else and
                                       # return a float.
recev_time = time.time()
ntpd_shm.valid = 0                     # don't use Python boolean
ntpd_shm.clockTimeStamp = clock_time
ntpd_shm.receiveTimeStamp = recv_time
ntpd_shm.precision = -5                # 2^-5 = 0.03125 seconds in this case
ntpd_shm.count += 1
ntpd_shm.valid = 1

As this is somewhat cumbersome, there is a convenience method update() that achieves the same in a single line. It requires the clock_time as mandatory argument and accepts several optional arguments.

ntpd_shm.update(clock_time, recv_time=recv_time, precision=-5)

# Or simply, if no other fields are to be changed. The receive timestamp is set
# automatically.
ntpd_shm.update(clock_time)

Applications

“Off by one second” reference time

A just for fun example of using python-ntpdshm is to implement an “off by one second” reference time source for ntpd. While this example makes no sense at all for practical purposes it provides a useful template for how it all fits together.

First we write the code for the reference clock.

import time
import ntpdshm

def get_clock_time():
    return time.time() - 1.0     # always be exactly one second behind.

def main():
    ntpd_shm = ntpdshm.NtpdShm(unit=2)
    ntpd_shm.mode = 0            # set mode
    ntpd_shm.precision = -6      # set precision once
    ntpd_shm.leap = 0            # how would we know about leap seconds?

    while True:
        clock_time = get_clock_time()
        ntpd_shm.update(clock_time)
        time.sleep(1.0)

if __name__ == '__main__':
    main()

Then add the shared memory reference clock to ntp.conf:

# ntp.conf
...
server 127.127.28.2 noselect     # unit=2, never select this reference
fudge 127.127.28.2 refid PYTH stratum 10

Restart ntpd and monitor the output of ntpq -pn. The offset should be exactly -1000 msec:

$ ntpq -pn
     remote           refid      st t when poll reach   delay   offset  jitter
==============================================================================
...
 127.127.28.2    .PYTH.          10 l    9   16  377    0.000  -1000.0   0.017

History

0.1.0 (15-Dec-2015)

  • Initial version
Release History

Release History

0.2.1

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
ntpdshm-0.2.1.tar.gz (42.3 kB) Copy SHA256 Checksum SHA256 Source Nov 12, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting