Skip to main content

NTV-pandas : A semantic, compact and reversible JSON-pandas converter

Project description

NTV-pandas : A semantic, compact and reversible JSON-pandas converter

ntv-pandas

For more information, see the user guide or the github repository.

NTV-pandas is referenced in the pandas ecosystem.

Why a NTV-pandas converter ?

pandas provide JSON converter but three limitations are present:

  • the JSON-pandas converter take into account few data types,
  • the JSON-pandas converter is not always reversible (conversion round trip)
  • external data types (e.g. TableSchema types) are not included

main features

The NTV-pandas converter uses the semantic NTV format to include a large set of data types in a JSON representation.

The converter integrates:

  • all the pandas dtype and the data-type associated to a JSON representation,
  • an always reversible conversion,
  • a full compatibility with Table Schema specification

NTV-pandas was developped originally in the json-NTV project

example

In the example below, a DataFrame with multiple data types is converted to JSON (first to NTV format and then to Table Schema format).

The DataFrame resulting from these JSON conversions are identical to the initial DataFrame (reversibility).

With the existing JSON interface, these conversions are not possible.

Data example:

In [1]: from shapely.geometry import Point
        from datetime import date
        import pandas as pd
        import ntv_pandas as npd

In [2]: data = {'index':        [100, 200, 300, 400, 500],
                'dates::date':  [date(1964,1,1), date(1985,2,5), date(2022,1,21), date(1964,1,1), date(1985,2,5)],
                'value':        [10, 10, 20, 20, 30],
                'value32':      pd.Series([12, 12, 22, 22, 32], dtype='int32'),
                'res':          [10, 20, 30, 10, 20],
                'coord::point': [Point(1,2), Point(3,4), Point(5,6), Point(7,8), Point(3,4)],
                'names':        pd.Series(['john', 'eric', 'judith', 'mila', 'hector'], dtype='string'),
                'unique':       True }

In [3]: df = pd.DataFrame(data).set_index('index')
        df.index.name = None

In [4]: df
Out[4]:       dates::date  value  value32  res coord::point   names  unique
        100    1964-01-01     10       12   10  POINT (1 2)    john    True
        200    1985-02-05     10       12   20  POINT (3 4)    eric    True
        300    2022-01-21     20       22   30  POINT (5 6)  judith    True
        400    1964-01-01     20       22   10  POINT (7 8)    mila    True
        500    1985-02-05     30       32   20  POINT (3 4)  hector    True

JSON-NTV representation:

In [5]: df_to_json = df.npd.to_json()
        pprint(df_to_json, compact=True, width=120, sort_dicts=False)
Out[5]: {':tab': {'index': [100, 200, 300, 400, 500],
                  'dates::date': ['1964-01-01', '1985-02-05', '2022-01-21', '1964-01-01', '1985-02-05'],
                  'value': [10, 10, 20, 20, 30],
                  'value32::int32': [12, 12, 22, 22, 32],
                  'res': [10, 20, 30, 10, 20],
                  'coord::point': [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [3.0, 4.0]],
                  'names::string': ['john', 'eric', 'judith', 'mila', 'hector'],
                  'unique': True}}

Reversibility:

In [6]: print(npd.read_json(df_to_json).equals(df))
Out[6]: True

Table Schema representation:

In [7]: df_to_table = df.npd.to_json(table=True)
        pprint(df_to_table['data'][0], sort_dicts=False)
Out[7]: {'index': 100,
         'dates': '1964-01-01',
         'value': 10,
         'value32': 12,
         'res': 10,
         'coord': [1.0, 2.0],
         'names': 'john',
         'unique': True}

In [8]: pprint(df_to_table['schema'], sort_dicts=False)
Out[8]: {'fields': [{'name': 'index', 'type': 'integer'},
                    {'name': 'dates', 'type': 'date'},
                    {'name': 'value', 'type': 'integer'},
                    {'name': 'value32', 'type': 'integer', 'format': 'int32'},
                    {'name': 'res', 'type': 'integer'},
                    {'name': 'coord', 'type': 'geopoint', 'format': 'array'},
                    {'name': 'names', 'type': 'string'},
                    {'name': 'unique', 'type': 'boolean'}],
         'primaryKey': ['index'],
         'pandas_version': '1.4.0'}

Reversibility:

In [9]: print(npd.read_json(df_to_table).equals(df))
Out[9]: True

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ntv_pandas-1.0.2.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

ntv_pandas-1.0.2-py3-none-any.whl (12.5 kB view details)

Uploaded Python 3

File details

Details for the file ntv_pandas-1.0.2.tar.gz.

File metadata

  • Download URL: ntv_pandas-1.0.2.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for ntv_pandas-1.0.2.tar.gz
Algorithm Hash digest
SHA256 49320cc73da2018297a18ff3cded33670f8f89b625f818aec3aa03df8d360b52
MD5 858a110cc1033eebdecbd5f920cff5e4
BLAKE2b-256 f2fbb917d2897e14960332a6c084b38706982cc4ada30a2c15d4805f756658f6

See more details on using hashes here.

File details

Details for the file ntv_pandas-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: ntv_pandas-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 12.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for ntv_pandas-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ab3cb5a2d0e1767d8cf95bafdf1978fde4e8c3942f68d553a593cc309c775496
MD5 c662bb5862861de8345d770f754a7298
BLAKE2b-256 468e4555338832a07f264cca57faefe509e9a026f045df5cff4bf50dbe72ee50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page