An utility package for nuclear data.
Project description
nuclyr - an utility package for nuclear physics
Build
The package nuclyr is available via pip
. See https://pypi.org/project/nuclyr/.
Just run:
pip install nuclyr
Or just clone the repository and build it from there using setup.py
.
For the webscraping part of the package a driver for your favorite browser is needed, e.g. chromedriver
or msedgedriver
. You can find them via the following links:
Please make sure, you're downloading the right version for your browser.
Config
At start nuclyr will create a configuration file in your home directory called .nuclyr
which is in JSON format. You can easily edit all the package configurations with your prefered text editor, e.g. the location of the webdriver.
The configurations can also be added within a python script via:
import nuclyr.config as cf
#Setting driver_loc to "path/to/driver"
cf.Set("driver_loc", "path/to/driver")
#Getting the current options for the driver location
cf.Get("driver_loc")
#print the whole configuration file
cf.Show()
Submodules
exfor
This submodule is for mineing up-to-date reaction data from the EXFOR data base.
A simple example to mine the cross section data for 63Cu(p,n)
would look like:
#import nuclyr modules
import nuclyr.config as cf
from nuclyr import exfor
#import pyplot for plotting the data
import matplotlib.pyplot as plt
#definition of target and reaction of interest
target="63Cu"
reaction="p,n"
#setting the driver location
cf.Set("driver_loc","path/to/driver")
#obtaining the data via exfor.getSig()
data, legend = exfor.getSIG(target,reaction)
#plotting the dataframes
plt.figure(1, figsize=(8,5))
plt.xlim(xmin=0, xmax=40)
plt.ylim(ymin=0, ymax=1000)
plt.xlabel("proton energy [MeV]", size=25)
plt.ylabel("cross section [mb]", size=25)
plt.text(20, 400, r"$^{63}$Cu(p,n)", size=25)
plt.gca().tick_params(labelsize=20)
for df in data:
plt.scatter(df[('EN','MEV')], df[('DATA','MB')])
plt.tight_layout()
plt.show()
The result would look like:
.
mass
You want to use recommended values for nuclear masses in your python code? You can get them via this submodule. Here is a small example of getting the mass excesses of thin isotopes.
from nuclyr import mass
import matplotlib.pyplot as plt
import numpy as np
masses = np.arange(99,138)
excess = np.zeros(len(masses))
errors = np.zeros(len(masses))
for i in range(len(masses)):
number[i], errors[i] =mass.massExcess(50,masses[i])
plt.figure(1, figsize=(8,5))
plt.ylabel(r"mass excess [MeV]", size=25)
plt.xlabel(r"mass number", size=25)
plt.gca().tick_params(labelsize=15)
plt.text(115, -60, r"Z=50", size=30)
plt.errorbar(masses, number, yerr=errors, color="black", marker="o", linestyle="--")
plt.tight_layout()
plt.show()
The script above will produce the following plot:
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file nuclyr-0.16.tar.gz
.
File metadata
- Download URL: nuclyr-0.16.tar.gz
- Upload date:
- Size: 239.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | daa3ee20c2df079c047ddb82acb6d6dcbc244931e2ec930fae6fc179758dd854 |
|
MD5 | fbf1dffbcf8eee5fab454c693566289b |
|
BLAKE2b-256 | 60884a06902debbb18d602ca9f31a24f8f24802463bbd8b334c7fb6a1375e7f6 |
File details
Details for the file nuclyr-0.16-py3-none-any.whl
.
File metadata
- Download URL: nuclyr-0.16-py3-none-any.whl
- Upload date:
- Size: 244.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 489a1dd32edf237f466bc9fb73dd9e68980befa87bde7389e6e8ec97677357f9 |
|
MD5 | a74bf3c8118965a6c71e66b66a597406 |
|
BLAKE2b-256 | 495d010f7276fae4a22d1d1f217a42685c47733271ade3839b11a0e1d4326942 |