Skip to main content

Math algorithms in ML on torch

Project description

PyPi Python Download License RTD


Nueramic MathML

Nueramic-mathml is a library for visualizing and logging the steps of optimization algorithms in machine learning. The project uses torch for calculations and plotly for visualization.

pip install nueramic-mathml

Quick tour Colab_1

Optimization

You can minimize the functions and see a detailed description of each step. After minimizing, you have a history with complete logs. Also available multidimensional optimisation.

def f(x): return x ** 3 - x ** 2 - x  # Minimum at x = 1
bounds = (0, 3)
one_optimize.golden_section_search(f, bounds, epsilon=0.01, verbose=True)[0]

Iteration: 0        |        point = 1.500  |        f(point) = -0.375
Iteration: 1        |        point = 0.927  |        f(point) = -0.990
Iteration: 2        |        point = 1.281  |        f(point) = -0.820
Iteration: 3        |        point = 1.062  |        f(point) = -0.992
Iteration: 4        |        point = 0.927  |        f(point) = -0.990
Iteration: 5        |        point = 1.011  |        f(point) = -1.000
Iteration: 6        |        point = 0.959  |        f(point) = -0.997
Iteration: 7        |        point = 0.991  |        f(point) = -1.000
Iteration: 8        |        point = 1.011  |        f(point) = -1.000
Iteration: 9        |        point = 0.998  |        f(point) = -1.000
Iteration: 10       |        point = 1.006  |        f(point) = -1.000
Searching finished. Successfully. code 0
1.0059846881033916

Models

You can use our models for classification and regression

from nueramic_mathml.ml import LogisticRegressionRBF
from sklearn.datasets import make_moons

x, y = make_moons(10_000, noise=.1, random_state=84)
x, y = torch.tensor(x), torch.tensor(y)
logistic_model_rbf = LogisticRegressionRBF(x[:1000]).fit(x, y, show_epoch=10)

Epoch:     1 | CrossEntropyLoss:  0.71496
Epoch:    12 | CrossEntropyLoss:  0.35328
Epoch:    23 | CrossEntropyLoss:  0.27769
Epoch:    34 | CrossEntropyLoss:  0.22395
Epoch:    45 | CrossEntropyLoss:  0.19266
Epoch:    56 | CrossEntropyLoss:  0.16695
Epoch:    67 | CrossEntropyLoss:  0.14686
Epoch:    78 | CrossEntropyLoss:  0.13051
Epoch:    89 | CrossEntropyLoss:  0.11724
Epoch:   100 | CrossEntropyLoss:  0.10629

logistic_model_rbf.metrics_tab(x, y)

{'auc_roc': 0.9974513817072977,
 'f1': 0.9700730618209839,
 'precision': 0.9709476828575134,
 'recall': 0.9692000150680542}

Visualizations

You can create beautiful animations of optimization algorithms and regression/classification models.

gen_classification_plot(x, y, model, threshold=0.5, epsilon=0.001)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

nueramic_mathml-0.75.2-py3-none-any.whl (45.7 kB view details)

Uploaded Python 3

File details

Details for the file nueramic_mathml-0.75.2-py3-none-any.whl.

File metadata

  • Download URL: nueramic_mathml-0.75.2-py3-none-any.whl
  • Upload date:
  • Size: 45.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.10.4 Darwin/21.5.0

File hashes

Hashes for nueramic_mathml-0.75.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3b9b7aee63a84296bc867090edbc193f7361fb1e121913fb6920dec49c308347
MD5 b4f490c0e3ee184880bd5e22d7b0c98a
BLAKE2b-256 68e85ec9a24af38a1e4b4230c905b08e67bcfae5c89f3ccab51b89a0f1ee86ac

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page