Skip to main content

Num - SUPREME PRECISION GENERAL PURPOSE ARITHMETIC-LOGIC DECIMAL CLASS

Project description

SUPREME PRECISION GENERAL PURPOSE ARITHMETIC-LOGIC DECIMAL CLASS

DESCRIPTION AND DOC

  • Num is a lightweight floating point numeric class for arbitrary precision results with always supreme precision.

Easy to use like school math and WITHOUT IEEE754 ISSUES or +0 AND -0 FAILURES, it can be deployed
for web e-commerce developing, accounting apps and general math programs included financial ones.


Installation num7 package

Using PIP

  • To install num7 package using pip, enter the following:

    pip  install num7 #win
    pip3 install num7 #linux
    
  • Ok!


HOW TO USE (integer numeric strings (ex. '2.0') MUST BE SUFFIXED WITH .0):

--- CALCULATOR MODE ---

                   >>> from num7 import Num, Num as calc  
ADDITION:          >>> calc.add('-5.3', '2.1')    #Num('-3.2')  
SUBTRACTION:       >>> calc.sub('-5.3', '2.1')    #Num('-7.4')  
MULTIPLICATION:    >>> calc.mul('-5.3', '2.1')    #Num('-11.13')  
DIVISION:          >>> calc.div('-5.3', '2.1')    #Num('-2.52380952380952380952380952380952380952380952380952380952380952380952380952380952')  
M+:                >>> M = calc('0.0'); M.inc('3.0'); M.inc('3.3'); M.inc('3.7'); print(M) #10.0  
M-:                >>>                  M.dec('5.0'); M.dec('3.3'); M.dec('1.5'); print(M) #0.2  
MC:                >>> M.clear(); print(M) #0.0  
INT   DIV AND REM: >>> calc.divmod('5.0', '3.0')  #(Num('1.0'), Num('2.0')) => tuple  
FLOAT DIV AND REM: >>> calc.divmod('5.2', '3.1')  #(Num('1.0'), Num('2.1')) => tuple  
POWER:             >>> calc.pow('-5.3', '2.0')    #Num('28.09')  
SQRT:              >>> calc.sqrt('2.0')           #Num('1.41421356237309504880168872420969807856967187537694807317667973799073247846210703')  
ROOT_ith           >>> calc.root_i('1.860867', 3) #Num('1.23')  
ROUND:             >>> calc.sqrt('2.0').round(2)  #Num('1.41')  
ABSOLUTE VALUE     >>> calc.abs('-3.0')           #Num('3.0')  
SUM:               >>> cart = ['19.32','18.37','15.13']; calc.sum(*cart)          #Num('52.82')  
MEAN:              >>> cart = ['19.32','18.37','15.13']; calc.mean(*cart).round() #Num('17.61')  
MIN:               >>> cart = ['19.32','18.37','15.13']; calc.min(cart)           #Num('15.13')  
MAX:               >>> cart = ['19.32','18.37','15.13']; calc.max(cart)           #Num('19.32')  
EXP:               >>> calc.mul('-5.3e1024', '2.1e1024').num2exp()                #'-1113E2046'  
REPL:              >>> a = calc('0.1'); b = calc('0.2'); print(calc.add(a, b))    #0.3  

CODING:

>>> from num7 import Num, Num as calc

(=) assignment:

>>> a = Num('3.0'); b = Num('5.0'); c = Num('0.0'); #  
>>> print('a =', a, 'b =', b, 'c =', c) #a = 3.0 b = 5.0 c = 0.0  

(+) adding:

>>> R = a+b+c; print(R) #8.0  
>>> a = Num('0.1'); b = Num('0.2'); c = Num('0.0'); print(a+b+c) #0.3  

(-) subtracting:

>>> a = Num('0.1'); b = Num('0.2'); c = Num('0.3');  
>>> print(a+b-c) #0.0  
>>> R = Num('-3.99') - Num('-5.20') - Num('+3.01'); print(R) #-1.8  

(*) multiplying:

>>> Num('-3.99') * Num('-5.20') * Num('+3.01') #-3.99 * (-5.20) * (+3.01 ) = Num('62.45148')  

(/) dividing (80 decimal digits default gets only for division operation):

>>> Num('3.0') / Num('5.7') #3 : 5.7 = Num('0.52631578947368421052631578947368421052631578947368421052631578947368421052631578')  

Division precision (ex. 128 decs) may be specified as parameter after numeric string as:

>>> Num('3.0', 128) / Num('5.7', 128) #3 : 5.7 = Num('0.52631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052')  

(// % operators, divmod python3 built-in function) int division and remainder:

>>> a = Num('5.0'); b = Num('2.0') #  
>>> Q = a // b; R = a % b; print('Quotient =', Q, 'Remainder =', R) #Quotient = 2.0 Remainder = 1.0  
>>> a = Num('15.0'); b = Num('4.0') #  
>>> Q, R = divmod(a, b); print('Quotient =', Q, 'Remainder =', R)   #Quotient = 3.0 Remainder = 3.0  

(divmod python3 built-in function) floating division and remainder:

>>> a = Num('10.123456789'); b = Num('2.0') #  
>>> Q, R = divmod(a, b); print('Quotient =', Q, 'Remainder =', R)   #Quotient = 5.0 Remainder = 0.123456789  

(sqrt) square root function:

>>> a = Num('123_456_789.1234567890123456789'); root = a.sqrt() # Num('11111.11106611111096998611053449930232404576951925017079015206589094347963821409843324')  
>>> print('result digits number tuple =>', root.len()) #result digits number tuple => (5, 80)  

(**) power operator and pow python3 built-in function:

>>> a = Num('2.22123') ** 64; print(a) # 15204983311631674774944.65147209888660757554174463321311015807893679105748958794491681177995203669698667160837739445605536688871012507194541849848681968140805876570485027380472936734094801420552285940765338219588362327695177798251793912104057999943308320501195784173135380826413054938730768027747418766018606636039075568645106645889100039914241  
>>> print(a.len())      #(23, 320) digits len tuple  
>>> print(Num(Num.pi))  #3.141592654  
>>> pow(Num(Num.pi), 8) #Num('9488.531025982131642534428505085353941520356351078169077371202330414440366336')  

logic (in, not in, is, is not, <, <=, >, >=, !=, ==) and relational operators (and, or, not).

(in):

>>> L = [Num('0.1'), Num('1.0'), Num('5.5'), Num('-3.0'), Num('-2.9'), Num('-3.0001'), Num('2.2')]  
>>> Num('-3.0001') in L; Num('-3.00001') in L         #True False  

(not in):

>>> Num('-3.0001') not in L; Num('-3.00001') not in L #False True  

(is, is not):

>>> M = calc('0.0'); Num('0.0') is M #False  
>>> M = calc('0.0'); M.inc('0.1') is not M; M #True Num('0.1')  
>>> M; N = M; N.dec('0.1'); N is M; M; N # Num('0.1') True Num('0.0') Num('0.0')  

(< <= > >= != ==)

>>> a = Num('0.0'); b = Num('0.1'); c = Num('-0.2')  
>>> a <  b; a <  c; b <  c #True  False False  
>>> a <= a; a <= c; b <= c #True  False False  
>>> a >  b; a >  c; b >  c #False True  True  
>>> a >= a; a >= c; b >= c #True  True  True  
>>> c == -2*b; a == c + 2*b ; a != a+b+c #True  True  True  
>>> a and b; a or b; not a #Num('0.0') Num('0.1') True  
>>> True if a and b else False #False  
>>> True if a or  b else False #True  

(+ - unary operators)

>>> Num('+2.5521') # Num('2.5521')  
>>> Num('-3.3321') # Num('-3.3321')  
>>> Num('+2.5521') + Num('-3.3321') #Num('-0.78')  

bitwise operators code:

from num7 import Num  
print('--- (&) AND ---')  
op1 = Num('3.0')  
op2 = 5  
print(f'{int(op1):08b}', op1) #00000011 3.0  
op1 &= op2                    #AND  
print(f'{op2:08b}', op2)      #00000101 5  
print(f'{int(op1):08b}', op1) #00000001 1  

print('--- (|) OR  ---')  
op1 = Num('3.0')  
op2 = 5  
print(f'{int(op1):08b}', op1) #00000011 3.0  
op1 |= op2                    #OR  
print(f'{op2:08b}', op2)      #00000101 5  
print(f'{int(op1):08b}', op1) #00000111 7  

print('--- (^) XOR ---')  
op1 = Num('3.0')  
op2 = 5  
print(f'{int(op1):08b}', op1) #00000011 3.0  
op1 ^= op2                    #XOR  
print(f'{op2:08b}', op2)      #00000101 5  
print(f'{int(op1):08b}', op1) #00000110 6  

print('--- (<<) LEFT SHIFT -X10 MULTIPLIER ---')  
op1 = Num('1.0')  
op2 = 2  
print(f'{int(op1):08b}', op1) #00000001 1.0  
op1 <<= op2                   #LEFT SHIFT -X10 MULTIPLIER  
print(f'{op2:08b}', op2)      #00000010 2  
print(f'{int(op1):08b}', op1) #01100100 100.0  

print('--- (>>) RIGHT SHIFT -X10 DIVIDER ---')  
op1 = Num('250.0')  
op2 = 1  
print(f'{int(op1):08b}', op1) #11111010 250.0  
op1 >>= op2                   #RIGHT SHIFT -X10 DIVIDER  
print(f'{op2:08b}', op2)      #00000001 1  
print(f'{int(op1):08b}', op1) #00011001 25.0  

print('--- (~) NOT ---')  
op1 = Num('10.0')  
print(f'{int(op1):08b}', op1) #00001010 10.0  
op2 = ~op1                    #(~) NOT  
print(f'{int(op2):08b}', op2) #00000101 5.0  

On a given variable the following arithmetic methods are available:

#variable arithmetics  
from num7 import Num  
a = Num('10.25')  
print(a)       #10.25  
a.inc()        #increment (default) by one  
print(a)       #11.25   
a.dec(2)       #decrement (optional) 2 units  
print(a)       #9.25  
a.incmul()     #multiply (default) 10 times  
print(a)       #92.5  
a.decdiv(100)  #x100 (optional) division  
print(a)       #0.925  
a.clear()      #a variable set to zero   
print(a)       #0.0    

EVEN ODD numbering methods:

from num7 import Num  
a = Num(6); b = Num(3); c = Num('3.14')  
print(a, 'INTEGER =>', a.is_numint(), 'EVEN =>', a.is_numeven()) #6.0 INTEGER => True EVEN => True  
print(b, 'INTEGER =>', b.is_numint(), 'ODD  =>', b.is_numodd())  #3.0 INTEGER => True ODD  => True 
print(c, 'FLOAT  =>', c.is_numfloat())                           #3.14 FLOAT  => True  

Advanced logic programming snippet

LOOP EXAMPLE >>>

from num7 import Num  
i = Num(0)  
while i < Num('1.0'):  
	i.inc('0.1') #i += Num('0.1')  
	if i <= Num('0.5'):  
		continue  
	print(i) #0.6, 0.7, 0.8, 0.9, 1.0  
while i:  
	i.dec('0.1') #i -= Num('0.1')  
	if i >= Num('0.5'):  
		continue  
	print(i) #0.4 0.3 0.2 0.1 0.0  

ROUNDING AND ACCOUNTING >>>

from num7 import Num   
p = Num('11.19')                       #PRICE -Toslink cable for soundbar  
pd = round(p.f_price_over(-7))         #PRICE DISCOUNTED 7%  
d = round(p - pd)                      #DISCOUNT  
p_noTAX = round(p.f_price_spinoff(22)) #ITEM COST WITHOUT TAX 22%  
TAX = round(p - p_noTAX)               #TAX 22%  
print(F'price={p} PAYED={pd} discount={d} COST={p_noTAX} TAX={TAX}') #price=11.19 PAYED=10.41 discount=0.78 COST=9.17 TAX=2.02  

OUTPUT FORMATTING AND LOCALIZATION >>>

import locale  
from num7 import Num  
s = locale.setlocale(locale.LC_ALL, "")  
print('settings:', s) #settings: Italian_Italy.1252  
#calculating banking loan  
asset = Num('100_000.0'); rate = Num('6.5'); years = Num('20.0')  
monthly_payment = Num.f_fund_fr(asset, rate, years)  
print(locale.format_string("%.2f", float(monthly_payment)))   #756,30  
print(locale.currency(float(monthly_payment), grouping=True)) #756,30 €  

ROUNDING TYPES >>>

from num7 import Num  
''' Num floor rounding '''  
print('--' * 10 + ' Num floor rounding')  
n = Num(Num.pi)            # 3.141592654  
print(n, n.round_floor(2)) # 3.14  
n = -Num(Num.pi)           #-3.141592654  
print(n, n.round_floor(2)) #-3.15  
n = Num(Num.pi) - 3        # 0.141592654  
print(n, n.round_floor(2)) # 0.14  
n = -Num(Num.pi) + 3       #-0.141592654  
print(n, n.round_floor(2)) #-0.15  

print('--' * 10 + ' Num ceil rounding')  
''' Num ceil rounding '''  
n = Num(Num.pi)           # 3.141592654  
print(n, n.round_ceil(2)) # 3.15  
n = -Num(Num.pi)          #-3.141592654  
print(n, n.round_ceil(2)) #-3.14  
n = Num(Num.pi) - 3       # 0.141592654  
print(n, n.round_ceil(2)) # 0.15  
n = -Num(Num.pi) + 3      #-0.141592654  
print(n, n.round_ceil(2)) #-0.14  

print('--' * 10 + ' Num standard rounding')  
''' Num standard rounding '''  
n = Num(Num.pi)      # 3.141592654  
print(n, n.round())  # 3.14  
n = -Num(Num.pi)     #-3.141592654  
print(n, n.round())  #-3.14  
n = Num(Num.pi) - 3  # 0.141592654  
print(n, n.round(4)) # 0.1416  
n = -Num(Num.pi) + 3 #-0.141592654  
print(n, n.round(4)) #-0.1416  

print('--' * 10 + ' Num half to even rounding (statistic, zero symmetric)')  
''' Num half even rounding '''  
n = Num(Num.pi).round_floor(4)      # 3.1415  
print(n, n.round_bank(3))           # 3.142  
n = -Num(Num.pi).round_floor(4)     #-3.1415  
print(n, n.round_bank(3))           #-3.142  
n = Num(Num.pi).round_floor(8) - 3  # 0.14159265  
print(n, n.round_bank(7))           # 0.1415926  
n = -Num(Num.pi).round_floor(8) + 3 #-0.14159265  
print(n, n.round_bank(7))           #-0.1415926  

PERFORMANCE EVALUATION AND SQUARENESS >>>

from num7 import Num  
from time import perf_counter  	
tic = perf_counter() #Start Time  
a = Num('-1.123456789'+'e-100')      #calculating division 10**100...  
toc = perf_counter() #End Time  
T1 = toc - tic  
print(f"a finished sec. {T1:1.6f}")  
tic = perf_counter() #Start Time  
b = ('-1.123456789') >> Num('100.0') #calculating division 10**100...  
toc = perf_counter() #End Time  
T2 = toc - tic  
print(f"b finished sec. {T2:1.6f}")  
R = Num.f_perf_time(str(T1), str(T2))  
print('PCT=>', R[0].round(), 'SCALE=>', R[1].round(), 'SQUARENESS=>', a == b) #PCT= -98.6 SCALE= -70.47 SQUARENESS=> True  
#stock exchange assets performance  
previous = Num('26.96'); now = Num('27.27')  
var_pct = Num.f_perf(previous, now).round()  
print(f'{float(var_pct):+.2f}')  

SCIENTIFIC NOTATION AND HIGH PRECISION RESULTS >>>

from num7 import Num    
a = Num('1_000_000_000_000_000_000_000.0') #standard notation  
b = Num('1e21') #scientific notation  
SUM = a + b     #SUM  
ieee754 = float(a)+float(b)  
print('SUM == ieee754', SUM == Num(str(ieee754)), ' SUM =>', SUM.num2exp()) #SUM == ieee754 True  SUM => 2e21  

a = Num('1_000_000_000_000_000_000_000.0') #standard notation  
b = Num('1e21') #scientific notation  
MUL = a * b     #MUL  
ieee754 = float(a)*float(b)  
print('MUL == ieee754', MUL == Num(str(ieee754)), ' MUL =>', MUL.num2exp()) #MUL == ieee754 True  MUL => 1e42  

a = '1.23456789'  
b = '9.87654321'  
MUL = Num(a) * Num(b) #MUL  
ieee754 = float(a)*float(b)  
print('MUL == ieee754', MUL == Num(str(ieee754)), 'MUL =>', MUL, float(a)*float(b), '=> IEEE754 PRECISION FAILURE!') #MUL == ieee754 False MUL => 12.1932631112635269 12.193263111263525 => IEEE754 PRECISION FAILURE!  

a = '1.23456789e320'  #scientific notation  
b = '9.87654321e320'  
MUL = Num(a) * Num(b) #MUL  
ieee754 = float(a)*float(b)  
print('MUL == ieee754', MUL.str() == str(ieee754), 'MUL =>', MUL.num2exp(), float(a)*float(b), '=> IEEE754 inf FAILURE!') #MUL == ieee754 False MUL => 121932631112635269e624 inf => IEEE754 inf FAILURE!  

a = '2e320' #scientific notation  
b = '3e-320'  
MUL = Num(a) * Num(b) #MUL  
ieee754 = float(a)*float(b)  
print('MUL == ieee754', MUL.str() == str(ieee754), 'MUL =>', MUL.num2exp(), ieee754, '=> IEEE754 inf FAILURE!') #MUL == ieee754 False MUL => 6.0 inf => IEEE754 inf FAILURE!  

a = '1e200' #scientific notation  
b = '5e1200'  
T1 = Num(a, 1200) #ultra precision (over 80 digits default) floating point division must be specified!  
T2 = Num(b)  
DIV = T1 / T2 #DIV  
ieee754 = float(a)/float(b)  
print('DIV == ieee754', DIV.str() == str(ieee754), 'DIV =>', DIV.num2exp(), ieee754, '=> IEEE754 precision FAILURE!') #DIV == ieee754 False DIV => 2e-1001 0.0 => IEEE754 precision FAILURE!  

FLOAT TO NUM CONVERSION LIST >>>

from num7 import Num  
L = [1011, 0.0, 9.998412, 7.0, 0.123, -2.0123, 10, 6]
LN= Num.float2num_list(L)
print(list(i.n for i in LN)) #['1011.0', '0.0', '9.998412', '7.0', '0.123', '-2.0123', '10.0', '6.0']
print(list(i for i in LN))   #[Num('1011.0'), Num('0.0'), Num('9.998412'), Num('7.0'), Num('0.123'), Num('-2.0123'), Num('10.0'), Num('6.0')]

SAVE NUMERIC LIST TO DISK FILE >>>

Num.f_filewrite(L) #

READ NUMERIC LIST FROM DISK FILE (nums.txt default filename) >>>

L = Num.f_fileread(); print(L) #[Num('1011.0'), Num('0.0'), Num('9.998412'), Num('7.0'), Num('0.123'), Num('-2.0123'), Num('10.0'), Num('6.0')]

FAQ

Q. I usually try to add 0.1 to 0.2 in python3 with this code:

>>> print(0.1 + 0.2)  

and the result is:

>>> 0.30000000000000004  

How instead can it gets exactly 0.3?
A. Using Num class >>>

from num7 import Num, Num as calc  
print(Num('0.1') + Num('0.2'))  #calc.add('0.1', '0.2') #0.3  

Q. I'll get an error when i usually type:

>>> Num(0.1)    

Traceback (most recent call last):  
File "<pyshell>", line 1, in <module>  
File "C:\Users\pincopallino\mydata\Python\Python310\lib\site-packages\num7.py", line 470, in __init__  
	raise ValueError(F"Num.__init__ => float, type not valid: {n}")  
ValueError: Num.__init__ => float, type not valid: 1.0	

What is wrong?
A. You must use quotes or string conversion with built-in str function:

>>> from num7 import Num   
>>> Num('0.1')    #Num('0.1')  
>>> Num(str(0.1)) #Num('0.1')  

Q. How can i convert a regular float to a Decimal? A. With Num.ieee754() method >>>

from num7 import Num, Num as calc  
a=0.1; b=0.2;  
c=a+b                              #0.30000000000000004 => PRECISION FAILURE!  
an = Num.ieee754(a); print(an)     #0.1000000000000000055511151231257827021181583404541015625  
bn = Num.ieee754(b); print(bn)     #0.200000000000000011102230246251565404236316680908203125  
cn = Num.ieee754(a+b);  
print(cn, '=> PRECISION FAILURE!') #0.3000000000000000444089209850062616169452667236328125 => PRECISION FAILURE!  
T = calc.add(an, bn)  
print(T, '=> OK.')                 #0.3000000000000000166533453693773481063544750213623046875 => OK.  

Q. I have two float variables in my code:

>>> a = 0.1; b = 0.2  

How can i convert them in Num type?
A. With Num.float2num method (or directly with str() built-in function) >>>

from num7 import Num  
a = 0.1; b = 0.2 #  
an= Num.float2num(a); bn= Num.float2num(b)        #an= Num(str(a)); bn= Num(str(b))  
print(an+bn, 'OK. VS', a+b, 'PRECISION FAILURE!') #0.3 OK. VS 0.30000000000000004 PRECISION FAILURE!  

Q. Can i do add or other math operations also with 10,000 digits after floating point?
A. Yes, you can. >>>

from num7 import Num  
print((Num('1.123456789e-10_000') + Num('3.987654321e-10_000')).num2exp()) #511111111e-10008  
print((Num('1.123456789e-10_000') - Num('3.987654321e-10_000')).num2exp()) #-2864197532e-10009  
print((Num('1.123456789e-10_000') * Num('3.987654321e-10_000')).num2exp()) #4479957319112635269e-20018  
print((Num('1.123456789e-10_000') / Num('3.987654321e-10_000'))) #0.28173374584742497292307298769992856660154820877213142969420392746224704666420356 

Q. With Python 3.11 it gets an error when running code with digits thousands >>>

from num7 import Num  
print((Num('1.123456789e-10_000') + Num('3.987654321e-10_000')).num2exp()) #511111111e-10008  

ValueError: Exceeds the limit (4300) for integer string conversion: value has 10010 digits; use sys.set_int_max_str_digits() to increase the limit  

How can i fix it?
A. Set the max string digits allowed in this way >>>

from num7 import Num  
import sys  
sys.set_int_max_str_digits(1_000_000) #1_000_000 str digits set 
print((Num('1.123456789e-10_000') + Num('3.987654321e-10_000')).num2exp()) #511111111e-10008  

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

num7-1.0.24.tar.gz (22.4 kB view details)

Uploaded Source

Built Distribution

num7-1.0.24-py3-none-any.whl (22.2 kB view details)

Uploaded Python 3

File details

Details for the file num7-1.0.24.tar.gz.

File metadata

  • Download URL: num7-1.0.24.tar.gz
  • Upload date:
  • Size: 22.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for num7-1.0.24.tar.gz
Algorithm Hash digest
SHA256 d709f6c70afb123435b9d8242208002b1843d5be45acf07c7acbe5a5f92baf11
MD5 4387b30afa16463f018f618284288911
BLAKE2b-256 e7f3c81ffdfdc2f7b7d91504e1e7542c9867cfacfdda7fef672d8b3aea0d1438

See more details on using hashes here.

File details

Details for the file num7-1.0.24-py3-none-any.whl.

File metadata

  • Download URL: num7-1.0.24-py3-none-any.whl
  • Upload date:
  • Size: 22.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.5

File hashes

Hashes for num7-1.0.24-py3-none-any.whl
Algorithm Hash digest
SHA256 5ebb8f39ab969d62ca193edab233934116f632c5416daeed8789701a90502a54
MD5 1c2ba803c8ddb490b82761230275b504
BLAKE2b-256 362c7484d3dabc086064b645c05efeae44f29a00c21969c94a0ea5b3524f75cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page