an efficient binary serialization format for numerical data
Project description
NumBin
An efficient binary serialization format for numerical data.
Install
pip install numbin
Usage
from numbin import NumBin
import numpy as np
nb = NumBin()
arr = np.random.rand(5, 3)
# in memory
binary = nb.dumps(arr)
print(nb.loads(binary))
# file
with open("num.bin", "wb") as f:
nb.dump(arr, f)
with open("num.bin", "rb") as f:
print(nb.load(f))
Benchmark
The code can be found in bench.py
Tested with AMD Ryzen 7 5800H.
================================================================================
pickle_serde
size: 1 times: min(8.266e-06) mid(8.637e-06) max(0.00017574) 95%(8.386e-06) Std.(4.4708e-06)
size: 1024 times: min(9.027e-06) mid(9.588e-06) max(0.00048644) 95%(9.157e-06) Std.(6.6986e-06)
size: 65536 times: min(0.00014838) mid(0.00015669) max(0.00059667) 95%(0.00015015) Std.(3.4924e-05)
size: 3145728 times: min(0.0078354) mid(0.0088624) max(0.026796) 95%(0.0079751) Std.(0.0018613)
size: 201326592 times: min(1.4744) mid(2.6627) max(12.929) 95%(1.4906) Std.(4.9328)
================================================================================
numbin_serde
size: 1 times: min(1.823e-06) mid(1.973e-06) max(0.00090879) 95%(1.863e-06) Std.(9.2777e-06)
size: 1024 times: min(2.504e-06) mid(2.665e-06) max(0.00024218) 95%(2.555e-06) Std.(3.2113e-06)
size: 65536 times: min(3.3083e-05) mid(3.3905e-05) max(0.0026087) 95%(3.3248e-05) Std.(8.1968e-05)
size: 3145728 times: min(0.0092391) mid(0.011318) max(0.12104) 95%(0.0093036) Std.(0.012046)
size: 201326592 times: min(0.84969) mid(1.7524) max(3.2798) 95%(0.88241) Std.(0.7914)
================================================================================
numpy_save_load
size: 1 times: min(0.00010159) mid(0.00010938) max(0.10722) 95%(0.00010299) Std.(0.0012863)
size: 1024 times: min(0.00010753) mid(0.00014313) max(0.0010275) 95%(0.00011039) Std.(4.629e-05)
size: 65536 times: min(0.00016488) mid(0.00018317) max(0.0022175) 95%(0.00016596) Std.(7.817e-05)
size: 3145728 times: min(0.013115) mid(0.014641) max(0.091159) 95%(0.013145) Std.(0.0090796)
size: 201326592 times: min(0.83881) mid(1.6322) max(3.0162) 95%(0.84089) Std.(0.85819)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
numbin-0.2.0.tar.gz
(7.9 kB
view details)
Built Distribution
File details
Details for the file numbin-0.2.0.tar.gz
.
File metadata
- Download URL: numbin-0.2.0.tar.gz
- Upload date:
- Size: 7.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a1efc6a9d4da310dccbe979f45d98687478faef08d66c9ce34254776e98a8d3 |
|
MD5 | 9a5098494ac7b502772f758e715dbed7 |
|
BLAKE2b-256 | a57df80df48f5691d3f0a4860ed673354d5c786daa152dcbef1cf3d5485cafc3 |
File details
Details for the file numbin-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: numbin-0.2.0-py3-none-any.whl
- Upload date:
- Size: 8.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 281cc6af90d005deca316ed4c5eb0cc57f6b296548ee346c08469cabbd42f6dc |
|
MD5 | 1847992c700d6d272d5cc87c91d679e7 |
|
BLAKE2b-256 | bae76d0bbdbb845a6acb0aa7d17f42fe9032a7cb42c47e84c2b641bf62227eb0 |