Convert JPL SPK ephemeris to numpy array
Project description
Author: Behrouz Safari
License: MIT
numeph
Convert JPL SPK ephemeris to numpy array
Installation
Install the latest version of numeph from PyPI:
pip install numeph
Requirements are numpy and jplephem
Save some segments of 'de440s.bsp' from 2020 to 2030:
from datetime import datetime
from numeph import SPK
t1 = datetime(2020, 1, 1)
t2 = datetime(2030, 1, 1)
spk = SPK(fname='de440s.bsp', t1=t1, t2=t2,
segs_tup=[(0,10), (0,3), (3,399), (3,301)])
# save as txt file
spk.to_txt('de440s_2020_2030.txt')
# save as pickle
spk.to_pickle('de440s_2020_2030.pickle')
Load .txt or .pickle files:
You can load the above saved files using load_txt and load_pickle functions. The will return a dictionary of Segment objects.
from numeph import load_txt
dc = load_txt('de440s_2020_2030.txt')
To access each segment, pass the (center, target) tuple as dictionary key.
seg = dc[(3,301)]
get position of an object from a segment:
t = datetime.utcnow()
pos = seg.get_pos(t)
See more at astrodatascience.net
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
numeph-0.3.4.tar.gz
(5.9 kB
view details)
Built Distribution
File details
Details for the file numeph-0.3.4.tar.gz
.
File metadata
- Download URL: numeph-0.3.4.tar.gz
- Upload date:
- Size: 5.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.7.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b79b1b19af9c4a5f57e08d39d300177be6d2400b744a2f157fe06d79c0fac991 |
|
MD5 | c06788f63f463a6056847d554e0971b1 |
|
BLAKE2b-256 | 7309ddb102f599f715f42a3d9e80e26de1244cdb2e725d6fb488e34382aee1b3 |
File details
Details for the file numeph-0.3.4-py3-none-any.whl
.
File metadata
- Download URL: numeph-0.3.4-py3-none-any.whl
- Upload date:
- Size: 6.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.7.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f82e486ece7bb7cc5c5faee99af1e58b18b07fdfea1c76772ad0014d6edf3051 |
|
MD5 | fbc5a5d58169fbfeb4bb87f0102a1256 |
|
BLAKE2b-256 | e1c72b43d4dd8c3a73593879394c8a0ffe6ed69a8152d6e94debd0f12245e528 |