Skip to main content

Quick and easy way to deploy your Numerai models

Project description

compute-lite

build and release

pip install -r requirements.txt
# modify pyproject.toml version
python -m build  # this will generate dist dir
python -m twine upload dist/*  # upload to pypi

usage

import json
import os
import pandas as pd
import numerai_compute_lite as ncl
from numerapi import NumerAPI
from lightgbm import LGBMRegressor

import dotenv
dotenv.load_dotenv() # loads API secrets from .env file

napi = NumerAPI()

napi.download_dataset("v4/train.parquet")
napi.download_dataset("v4/features.json")
training_data = pd.read_parquet('v4/train.parquet')

feature_set = []
with open("v4/features.json", "r") as f:
    feature_metadata = json.load(f)
features = feature_metadata["feature_sets"]["small"]

model = LGBMRegressor()
model.fit(
    training_data[features],
    training_data['target']
)

targets = training_data.columns.str.startswith('target')

model_id = '08e77bbf-036c-4216-b2f7-f8ed4beb88e9'
ncl.deploy(model_id, model, features, 'requirements.txt')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numerai-compute-lite-0.0.2.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

numerai_compute_lite-0.0.2-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file numerai-compute-lite-0.0.2.tar.gz.

File metadata

  • Download URL: numerai-compute-lite-0.0.2.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for numerai-compute-lite-0.0.2.tar.gz
Algorithm Hash digest
SHA256 5db0f408325b9583853d903b6c19480a1aa5c06f6e793d6fb28306d8b068c580
MD5 cccb49b0b1a3f4707fe86d89bc79b910
BLAKE2b-256 f2e4b1766ee51b82e9915c7f3c6280924ad2190691f53365188794d9b08518de

See more details on using hashes here.

File details

Details for the file numerai_compute_lite-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for numerai_compute_lite-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5e008908f2ee69efc7b403f717029f0801d1829468197f36837ae458726d7ec5
MD5 e3a6cf521b746ddfd0b1f043e307d74d
BLAKE2b-256 06603288b250f76ea9a65880ef76485a76074f6e7fc31b3c5ea1ea34a1a45ad6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page