Quick and easy way to deploy your Numerai models
Project description
compute-lite
build and release
pip install -r requirements.txt
# modify pyproject.toml version
python -m build # this will generate dist dir
python -m twine upload dist/* # upload to pypi
usage
import json
import os
import pandas as pd
import numerai_compute_lite as ncl
from numerapi import NumerAPI
from lightgbm import LGBMRegressor
import dotenv
dotenv.load_dotenv() # loads API secrets from .env file
napi = NumerAPI()
napi.download_dataset("v4/train.parquet")
napi.download_dataset("v4/features.json")
training_data = pd.read_parquet('v4/train.parquet')
feature_set = []
with open("v4/features.json", "r") as f:
feature_metadata = json.load(f)
features = feature_metadata["feature_sets"]["small"]
model = LGBMRegressor()
model.fit(
training_data[features],
training_data['target']
)
targets = training_data.columns.str.startswith('target')
model_id = '08e77bbf-036c-4216-b2f7-f8ed4beb88e9'
ncl.deploy(model_id, model, features, 'requirements.txt')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file numerai-compute-lite-0.0.2.tar.gz
.
File metadata
- Download URL: numerai-compute-lite-0.0.2.tar.gz
- Upload date:
- Size: 11.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5db0f408325b9583853d903b6c19480a1aa5c06f6e793d6fb28306d8b068c580 |
|
MD5 | cccb49b0b1a3f4707fe86d89bc79b910 |
|
BLAKE2b-256 | f2e4b1766ee51b82e9915c7f3c6280924ad2190691f53365188794d9b08518de |
File details
Details for the file numerai_compute_lite-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: numerai_compute_lite-0.0.2-py3-none-any.whl
- Upload date:
- Size: 12.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5e008908f2ee69efc7b403f717029f0801d1829468197f36837ae458726d7ec5 |
|
MD5 | e3a6cf521b746ddfd0b1f043e307d74d |
|
BLAKE2b-256 | 06603288b250f76ea9a65880ef76485a76074f6e7fc31b3c5ea1ea34a1a45ad6 |