Skip to main content

Keras Callback to track Numerai consistency

Project description

A Keras callback that calculates your model’s consistency during training at each epoch. The callback prints the consistency and also adds the consistency at the end of each epoch to the training history under the consistency key.

Usage

Here is a usage example:

import pandas as pd
from numeraicb import Consistency
from keras.models import Sequential
from keras.layers.core import Dense

train = pd.read_csv('numerai_training_data.csv')
tourn = pd.read_csv('numerai_tournament_data.csv')

validation = tourn[tourn.data_type == 'validation']

features = ['feature{}'.format(i) for i in range(1, 51)]

X = train[features].values
Y = train.target.values

X_validation = validation[features].values
Y_validation = validation.target.values

model = Sequential()
model.add(Dense(30, kernel_initializer='uniform', input_dim=X.shape[1], activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adamax', loss='binary_crossentropy')

cb = Consistency(tourn)

# Now your models consistency will be printed at each epoch
history = model.fit(X, Y, callbacks=[cb], validation_data=(X_validation, Y_validation))

# Consistency is stored in the history as well
for epoch, consistency in enumerate(history.history['consistency']):
    print('consistency at epoch {}: {:.2%}'.format(epoch, consistency))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numeraicb-1.0.1.tar.gz (15.5 kB view details)

Uploaded Source

Built Distribution

numeraicb-1.0.1-py3-none-any.whl (4.2 kB view details)

Uploaded Python 3

File details

Details for the file numeraicb-1.0.1.tar.gz.

File metadata

  • Download URL: numeraicb-1.0.1.tar.gz
  • Upload date:
  • Size: 15.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numeraicb-1.0.1.tar.gz
Algorithm Hash digest
SHA256 0aaeab3b860581d7cb347357e407a9fe9b1278e0c372184d0699d7090ffaf9b3
MD5 3ca9473169ac5f19fa43f072ce3cee3f
BLAKE2b-256 7f8abf5f60a161f3fcbd1424ea5304d2077c0120e66c83f0d14a3ac357261ccf

See more details on using hashes here.

File details

Details for the file numeraicb-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for numeraicb-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6cbbf5b911f42468eaa310527dc618a236d4df05cf773cfa1359a089e86428a3
MD5 22a7d9b7ae635b3aff8a39d7dd47fba0
BLAKE2b-256 18b284a1b756aa1418d2f1579a7399056448720cce1f103c6b30518b82734f72

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page