A small package for evaluating numer.ai model locally
Project description
A small library to reproduce the scores on numer.ai diagnistics dashboard.
Installation
pip install numereval
Structure
Numerai main tournament evaluation metrics
numereval.numereval.evaluate
A generic function to calculate basic per-era correlation stats with optional feature exposure and plotting.
Useful for evaluating custom validation split from training data without MMC metrics and correlation with example predictions.
from numereval.numereval import evaluate
evaluate(training_data, plot=True, feature_exposure=False)
Correlations plot | Returned metrics |
---|---|
numereval.numereval.diagnostics
To reproduce the scores on diagnostics dashboard locally with optional plotting of per-era correlations.
from numereval.numereval import diagnostics
validation_data = tournament_data[tournament_data.data_type == "validation"]
diagnostics(
validation_data,
plot=True,
example_preds_loc="numerai_dataset_244\example_predictions.csv",
)
Validation plot | Returned metrics |
---|---|
Specific validation eras
specify a list of eras in the format eras = ["era121", "era122", "era209"]
validation_data = tournament_data[tournament_data.data_type == "validation"]
eras = validation_data.era.unique()[11:-2]
numereval.numereval.diagnostics(
validation_data,
plot=True,
example_preds_loc="numerai_dataset_244\example_predictions.csv",
eras=eras,
)
Validation plot | Returned metrics |
---|---|
Numerai Signals evaluation metrics
Note: Since predictions are neutralized against Numerai's internal features before scoring, results from numereval.signalseval.run_analytics()
do not represent exact diagnostics and live scores.
import numereval
from numereval.signalseval import run_analytics, score_signals
#after assigning predictions
train_era_scores = train_data.groupby(train_data.index).apply(score_signals)
test_era_scores = test_data.groupby(test_data.index).apply(score_signals)
train_scores = run_analytics(train_era_scores, plot=False)
test_scores = run_analytics(test_era_scores, plot=True)
train_scores | test_scores |
---|---|
Thanks to Jason Rosenfeld for allowing the run_analytics()
to be integrated into the library.
Docs will be updated soon!
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file numereval-0.2.5.tar.gz
.
File metadata
- Download URL: numereval-0.2.5.tar.gz
- Upload date:
- Size: 6.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65f8ef35a7d9cbf1486c52fbf67032098a2883d2701fd2fdfa35edd7a5fb8522 |
|
MD5 | 4f88496a306dc377db605741df677e3b |
|
BLAKE2b-256 | af4e09cf55e279e073b8e0e7360227153c72ef25eb1f0c7bbca7d0c821a59362 |
File details
Details for the file numereval-0.2.5-py3-none-any.whl
.
File metadata
- Download URL: numereval-0.2.5-py3-none-any.whl
- Upload date:
- Size: 7.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b897780182c40edf9c6bd17fdbc1f9b3e7a43e1712cf083ac343dab14ff424b5 |
|
MD5 | f77c0af2d9d623f8447e0807d83f5f39 |
|
BLAKE2b-256 | a3ac1a3b018f93c27e6b4ce665c3eedacd3854dfd4152224cc1ea12783783c16 |