Simple numerical derivative checker with randomized input sampling.
Project description
Numerical Derivative Checker
This package contains a numericcal derivative checker that can be used to verify first or second order derivatives by comparing them to the central finite difference approximation.
The following combinations of input and output types are currently supported
Derivative order | Output type | ||
---|---|---|---|
scalar | vector | ||
scalar | first / second | first | |
Input type | vector | first / second | first |
matrix | first | --- |
Sampling types
In helper_functions.py
, there are different sampling routines defined to randomize the function inputs.
The following samplers are currently implemented:
- ScalarSampler
- VectorSampler
- MatrixSampler
- PosDefMatrixSampler
Each sampling routine has various parameters such as minimum/maximum values or dimensionality.
Examples
Scalar input and output: f(x) = x**2
from numerical_derivative_checker import check_derivative, ScalarSampler
check_derivative(sampler=ScalarSampler(n_samples=200),
fun=lambda x: np.sin(x),
grad=lambda x: np.cos(x),
hess=lambda x: -np.sin(x))
Vector input and scalar output: f(x) = x^T A x
from numerical_derivative_checker import check_derivative, VectorSampler
A = np.random.rand(5, 5)
check_derivative(sampler=VectorSampler(n=5),
fun=lambda x: x @ A @ x,
grad=lambda x: (A + A.T) @ x)
Pos. def. matrix input and scalar output: f(X) = log(det(X))
from numerical_derivative_checker import check_derivative, PosDefMatrixSampler
check_derivative(sampler=PosDefMatrixSampler(n=3),
fun=lambda x: np.linalg.det(x),
grad=lambda x: np.linalg.det(x) * np.linalg.inv(x),
tol=1e-3)
see examples.py
for more examples.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for numerical_derivative_checker-0.8.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 904099158d459ce1e455170aef2d85a03647eff4ae0d08b0b9720ff97bc713b9 |
|
MD5 | 3eae6d602488ce6ae190e3dcf0f180e9 |
|
BLAKE2b-256 | 1a6b0a3dcc80c5f1284f694e25c2743a27751ee292e78c15d2066fea8808f443 |
Hashes for numerical_derivative_checker-0.8-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9dabb7c5e8ea14eb4cdc925cbc83157268fb8120dabe597f13a9b37412daced7 |
|
MD5 | 348f618c252ea42d57383f0fbb47add9 |
|
BLAKE2b-256 | 7369960332b2f70faac2b235885c756144b8a8ed51bac85d3f963c006d918c24 |