Skip to main content

Numerai tournament toolbox written in Python

Project description

Numerox is a Numerai tournament toolbox written in Python.

All you have to do is create a model. Take a look at model for examples.

Once you have a model numerox will do the rest. First download the Numerai dataset and then load it:

>>> import numerox as nx
>>> data = nx.download('numerai_dataset.zip')

Let’s use the logistic regression model in numerox to run 5-fold cross validation on the training data:

>>> model = nx.logistic()
>>> prediction = nx.backtest(model, data, tournament='bernie', verbosity=1)
logistic(inverse_l2=0.0001)
       logloss     auc     acc    ystd   stats
mean  0.692885  0.5165  0.5116  0.0056   tourn  bernie
std   0.000536  0.0281  0.0215  0.0003  region   train
min   0.691360  0.4478  0.4540  0.0050    eras     120
max   0.694202  0.5944  0.5636  0.0061  consis   0.625

OK, results are good enough for a demo so let’s make a submission file for the tournament. We will fit the model on the train data and make our predictions for the tournament data:

>>> prediction = nx.production(model, data, 'bernie', verbosity=1)
logistic(inverse_l2=0.0001)
       logloss     auc     acc    ystd   stats
mean  0.692808  0.5194  0.5142  0.0063   tourn      bernie
std   0.000375  0.0168  0.0137  0.0001  region  validation
min   0.691961  0.4903  0.4925  0.0062    eras          12
max   0.693460  0.5553  0.5342  0.0064  consis        0.75

Let’s upload our predictions to enter the tournament:

>>> prediction.to_csv('logistic.csv')
>>> upload_id, status = nx.upload('logistic.csv', 'bernie',
                                  public_id, secret_key, model_id)
metric                  value   minutes
concordance              True   0.0898
consistency              0.75   0.0898
originality             False   0.1783
validation_logloss     0.6928   0.1783
stakeable                True   0.1783

Examples

Have a look at the examples.

Install

Install with pip:

$ pip install numerox

After you have installed numerox, run the unit tests (please report any failures):

>>> import numerox as nx
>>> nx.test()

Requirements: numpy, scipy, pandas, sklearn, pytables, numerapi, setuptools, requests, nose.

Resources

License

Numerox is distributed under the the GPL v3+. See LICENSE file for details. Where indicated by code comments parts of NumPy are included in numerox. The NumPy license appears in the licenses directory.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numerox-4.1.5.tar.gz (1.8 MB view details)

Uploaded Source

Built Distribution

numerox-4.1.5-py3-none-any.whl (1.8 MB view details)

Uploaded Python 3

File details

Details for the file numerox-4.1.5.tar.gz.

File metadata

  • Download URL: numerox-4.1.5.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for numerox-4.1.5.tar.gz
Algorithm Hash digest
SHA256 dd572aebce04ffdd51eb10c6387b4de77a50cd2fdf49887d294ff34724b9a491
MD5 014537dcf516cd2e09a4615e78e350e4
BLAKE2b-256 8ee30d267094f6f602702697f27a254583755e7b85bcafa4224bee10ea927432

See more details on using hashes here.

Provenance

File details

Details for the file numerox-4.1.5-py3-none-any.whl.

File metadata

  • Download URL: numerox-4.1.5-py3-none-any.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for numerox-4.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 349141748205d6a776ddc37c684ef4e7ff847c402035c4f148d295e4689a5377
MD5 eb851fe23647aad9d733a0f91e52800d
BLAKE2b-256 87d28e90102fa527a9b20b72e6b84acae17b12864390713afdb79e1e105e3a57

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page