Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

Alexander K.

URL:

https://github.com/MrCheatak/numexpr_mod

What is NumExpr?

Please refer to the original Numexpr repo.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi.org/project/numexpr/#files). Installation can be performed as:

pip install numexpr_mod

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr_mod with:

python -c "import numexpr_mod; numexpr_mod.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Usage

This modification of the Numexpr package enables storage of the previously compiled expressions. Stored expressions can be then called by their assigned name.

Note that precompiled expressions accept only the same variable names with the same types. Although, both arrays and single values can be used for the same expression variable.

Output destination, order and casting can be preset at compilation time or be specified at expression call.

>>> import numexpr_mod as ne
>>> import numpy as np

>>> a = np.array([1,2,3,4,5])
>>> b = np.array([6,7,8,9,0])

>>> ne.cache_expression('a + b', 'sum_ab')
{'ex': <numexpr_mod.NumExpr object at 0x1090e36b0>, 'argnames': ['a', 'b'], 'kwargs': {'out': None, 'order': 'K', 'casting': 'safe', 'ex_uses_vml': False}}
>>> ne.re_evaluate('sum_ab')
array([ 7,  9, 11, 13,  5], dtype=int64)
>>> ne.evaluate('a + b')
array([ 7,  9, 11, 13,  5], dtype=int64)

Additionally, cached expresion names can be retrieved:

>>>ne.get_expression_names()
['sum_ab']

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr_mod-2.8.6.tar.gz (85.5 kB view details)

Uploaded Source

Built Distributions

numexpr_mod-2.8.6-cp311-cp311-win_amd64.whl (91.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

numexpr_mod-2.8.6-cp311-cp311-win32.whl (98.1 kB view details)

Uploaded CPython 3.11 Windows x86

numexpr_mod-2.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (381.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numexpr_mod-2.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (413.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numexpr_mod-2.8.6-cp311-cp311-macosx_11_0_arm64.whl (87.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numexpr_mod-2.8.6-cp311-cp311-macosx_10_9_x86_64.whl (98.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numexpr_mod-2.8.6-cp310-cp310-win_amd64.whl (91.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

numexpr_mod-2.8.6-cp310-cp310-win32.whl (98.1 kB view details)

Uploaded CPython 3.10 Windows x86

numexpr_mod-2.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (379.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numexpr_mod-2.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (411.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numexpr_mod-2.8.6-cp310-cp310-macosx_11_0_arm64.whl (87.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numexpr_mod-2.8.6-cp310-cp310-macosx_10_9_x86_64.whl (98.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numexpr_mod-2.8.6-cp39-cp39-win_amd64.whl (91.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

numexpr_mod-2.8.6-cp39-cp39-win32.whl (98.1 kB view details)

Uploaded CPython 3.9 Windows x86

numexpr_mod-2.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (379.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numexpr_mod-2.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (410.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numexpr_mod-2.8.6-cp39-cp39-macosx_11_0_arm64.whl (87.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numexpr_mod-2.8.6-cp39-cp39-macosx_10_9_x86_64.whl (98.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numexpr_mod-2.8.6-cp38-cp38-win_amd64.whl (91.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

numexpr_mod-2.8.6-cp38-cp38-win32.whl (98.1 kB view details)

Uploaded CPython 3.8 Windows x86

numexpr_mod-2.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (380.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numexpr_mod-2.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (411.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numexpr_mod-2.8.6-cp38-cp38-macosx_11_0_arm64.whl (87.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numexpr_mod-2.8.6-cp38-cp38-macosx_10_9_x86_64.whl (98.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numexpr_mod-2.8.6-cp37-cp37m-win_amd64.whl (91.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

numexpr_mod-2.8.6-cp37-cp37m-win32.whl (98.0 kB view details)

Uploaded CPython 3.7m Windows x86

numexpr_mod-2.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (377.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

numexpr_mod-2.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (409.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

numexpr_mod-2.8.6-cp37-cp37m-macosx_10_9_x86_64.whl (101.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numexpr_mod-2.8.6.tar.gz.

File metadata

  • Download URL: numexpr_mod-2.8.6.tar.gz
  • Upload date:
  • Size: 85.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for numexpr_mod-2.8.6.tar.gz
Algorithm Hash digest
SHA256 44dbd38d8d21a9a0345430455fdd0b907f3777bfb7b682f45a73fdf36635d970
MD5 1459702c3bce7b31aca1ddc60984d62a
BLAKE2b-256 d31018a7fa7a04e49300095ab22690e4c5a85bac50c261948c6db1bb2150ce8d

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ceb676c23c8edb2a566bc341284e237512dccad35c6e625f8757f45413864f49
MD5 2fccdf0e25a245bf109c501e8aefbe58
BLAKE2b-256 6157f05132de9e5ed40a517de2a3c77fc96f4bb299d2838d9f8fbf6afc6e91f0

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr_mod-2.8.6-cp311-cp311-win32.whl
  • Upload date:
  • Size: 98.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for numexpr_mod-2.8.6-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b407673d55d46627f978b0f469cf0e1acafa3c128e874ef4d994ee6621e9d04f
MD5 aadb33d2f023d770d8fed151ffac24bb
BLAKE2b-256 a29de5d56a1075311e32bad3aebd7edfee425b5d2811aa56357927118c032296

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0355bf3b6e38b44146a17f340e8b0e7b68b3978e83fb4bd688b4683b77180d9b
MD5 178d6e19d383923ebeadb5d515d3b52a
BLAKE2b-256 43f5eceb59b65750083f1396bd2b7123676152b5198973e559ecee1c967c55cb

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 779ed1a8d5f672b809b25ec066fdde0a4673cb2b269159887d85a02d11536cc4
MD5 42a01632693a88d8e70c1f5a284e6194
BLAKE2b-256 c7aeb8eb65b40699096cd87c110430d2023fac6cd86158173b2ac69fa88e4f3d

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2aaab349d80e7a254b03f784f8910d7a857147a1ab4e737fb1c2a0875d833581
MD5 f23af502639292a4a42ef43b0cf7cca3
BLAKE2b-256 231487281647460cedbf18c9558f6ae5c08e83993dd13091f1a6dd20b6c95d13

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1be3daae59252fcf21ff37fbda3f9c8eaf56b7a1e991d47f5cee66d3fcf21fcb
MD5 f721ee08d3bf9217c0e11f7f01d37ea9
BLAKE2b-256 4464d1edbeda421a832636c141f8d1c66173fc09c3b5625de094c7280fb99418

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fec1e295387ffd848770401cc76025b12c11715a7fc27851077f44082f9e3b74
MD5 12174be219db030a715f5d19c659c67f
BLAKE2b-256 c9949a579bcb46c4380375218f0007cec0fcf353821c7888263e42e8d93ef976

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr_mod-2.8.6-cp310-cp310-win32.whl
  • Upload date:
  • Size: 98.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for numexpr_mod-2.8.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 fd15f029368cdffd4876812eb6dc304f9230bb7a328481cefed48269c0ad6bf9
MD5 d49cadc6c16a156c78d23ed402856abc
BLAKE2b-256 cf17f237dec09a0dad269b05c9d14549cc7280e005bdfa1ff73c7e7418997393

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87791cd11678fdb1ac9a8b507b2f8bf92b6df0741b35516dd3e4dfe55855d266
MD5 ec480055e0bef767ffb836553f93efbf
BLAKE2b-256 f77c6d79560d1175846d3346dd8271826c24f8da320564a208e056f46a7aad4e

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 85d2349142ea99b27e89fe785b5def63597d1f8dd31e2f7cbddf4e4b5970808d
MD5 b90c3c0cff6fd8ce3fedd9da2ebce014
BLAKE2b-256 59b54a72cba8d8720d00b098ce15818f10a8706fe720034b1be073ef741badb0

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 859b9b04f27d0eed913ff3b6173ccbc4617bff3eb5176941741fb6dce2cae026
MD5 975c08cbce05fae255b8d5366469e0b9
BLAKE2b-256 adb6dfc94fa0f84a14362ea80cce139519001e23016f857e382e2a82c447b11e

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e94697a5e8052cd29040759272262335ba3664b462cbced1a26569c528628d37
MD5 561022a1b978e8af9ef7bdcf7c22b7d4
BLAKE2b-256 63fc8b4258632abcf743d84c5303bd491d4bcf85b06fcccefc8ff0fc1bdb608f

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e34e06008df440db3bd9b8e3b08765acc8c2c6847c62c15452ecda4e919bbef1
MD5 1485c5d9d9311f1ffba81cc034679b47
BLAKE2b-256 061eee5c4f31bde2ba276c6d96ce78d936309ad11ad1c24379bf32d83b0523bf

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr_mod-2.8.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 98.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for numexpr_mod-2.8.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0054192d4a11210e931925845b5ff3446eebeef08065c9cfe1fe33b1b5a79a3a
MD5 0f66c6175e32a6cd43c22e3a8d5a1985
BLAKE2b-256 17a68223586792a1d83cf0d84e515e14a6856354f275009609bb8637047df077

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d781e8cb32653db745bdefcc265686726515cc7f48d815e18b07d3f956e4eb6d
MD5 b6edb6aaf9e25f11c41bab3620a3bca6
BLAKE2b-256 577df44b3bd797cbf5ef4af173df57fef5986552f9cce84539b15195bcf15a1e

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3f044dbe84a84144ef071e11ba5e07ad0c60f4c574f3b46654a691807ce1528
MD5 1fb247e0b04b23bb545ac4b54764298a
BLAKE2b-256 457d864347baaa79b636e57a80c083729f6a3b0e49f8ab4ddd959d50d6d79ef8

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b091dc5e89842144c524fed5fb9d841d7348bf5ffeea4a3b286571f3b12b1a8c
MD5 f5c049fdc02c05a3cc0b527536b07a4a
BLAKE2b-256 efabf3f34c7d32c53d78ceb284551b69e34c8286fe9811eb1bcc16e266e0cc72

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e1d198a570da05d2310d117225ba8d2006e7196a536ad5aa8e15ac0e61fd65e
MD5 fca6c5a010763178647eec6569474d11
BLAKE2b-256 a0be097ad8d9647270d121f157832e56f02a6248bf7b230661c9d8a390c7e1fd

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 501a565eecb0a3982b1638b4395abbc826d6cd45a52d31856c91e0b62f24a8c8
MD5 1385e1f52dd9afbfaaf87abecf9a6c15
BLAKE2b-256 0ecb367bae790b4ad1848876c188428584e3294a45465c6c59c27bd8f0b40694

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: numexpr_mod-2.8.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 98.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for numexpr_mod-2.8.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a59dd51fdd1054a81c822da1e4ce8a43613c1317ff971eb3109fc4a0b29bdfb4
MD5 64842c63b29a411c20f7b7112eed0619
BLAKE2b-256 f53efa207cfe25d7f63ece2d840def786dc8f4b3e4a130b10491fa932c716ded

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6406509873b94195336b58e61e76eef9097567f4dff854938fb7f2dd6f3e3c5b
MD5 1e4ab9c37d9da01051aa1638541db6ce
BLAKE2b-256 1cdcaad803fd27a66b7bbc89e4e99a5020d331c582e819a9f194072cebc02cf1

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 821a1726b32a602730be87d6ac0eec0d0116ecdf3c1e9bf10a81740066550f0f
MD5 a253a85ca2495caa5088ba46662e7813
BLAKE2b-256 6caa988c8191cc93bc4cba1a0c79228ec1cdcaa2e426f821da63c1c7f2cca264

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab70d9f734d5ee0b89e169d225524150e66e71ae5483748f3fe9a0e17559baa0
MD5 13d58441b1b0cb57e48595070ae98e87
BLAKE2b-256 8d4f82d7974995de8ba9209c88275dfb4c77a7a3849e8a164a1633c517bd86ca

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e3b37e258df3d46f80f581c1fd17b0cd48f52b824ae068e86051ae03958aa0d8
MD5 80f36c1b36d11e88d1f9db763406defa
BLAKE2b-256 19981406bd6649c1826adc190d89f0f9e735a2fb426b1f1a233cae4c692b75d2

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2cf8eb5bdc37f6712342daca55ee06dd3a6cbcad03b0ad6299da9362fa754261
MD5 2eee152fb896bd77f0bf9e1312f11b27
BLAKE2b-256 7bce2a9b707106632c9964d9270f108992735189d78ea67998bfab4e133df59f

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numexpr_mod-2.8.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 98.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for numexpr_mod-2.8.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4fafb1a16b6daaf7ba34fcbf6b921fe5d0d9e333a45ea6180e7988ba493696a1
MD5 84a082dc121df37d2a6adb9ae87260c3
BLAKE2b-256 fde50576bf5d1da2e4262a983d5593a153880f4fb97deb3a7cba3a5b0c33296f

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cff81326be44a085c04dd3f83b6ce9d0b47c5c1b9278ea67621bde19f658fe2d
MD5 f258f17af27a27c7357dc5fee016ac27
BLAKE2b-256 bc8cf69760db69f13d73f3dd97ea75ac7e5457c572998ba49dca5f9c6d471261

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba49147416a4199c345163515a9d2618c1aacfb5fe7113119f6c109d77bc1535
MD5 003f599bf8429c89194335be1797c67e
BLAKE2b-256 b08a20b77b13b5da1eb279d5110bd0a53e70a529193f26266b22b7187a50410d

See more details on using hashes here.

File details

Details for the file numexpr_mod-2.8.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr_mod-2.8.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b3ef978ade66d42dbdc3ba0f860539c295046d153ed1f46ec0a61e16306a847
MD5 cc177b702e4b952cc522468405cdc602
BLAKE2b-256 33e6582be90b5a9a45bf234a62f142148b285bf06c9bb87451e540d17fb0e0bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page