Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Robert A. McLeod

Contact:
robbmcleod@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

IMPORTANT NOTE: NumExpr is looking for maintainers!

After 5 years as a solo maintainer (and performing a most excellent work), Robert McLeod is asking for a well deserved break. So the NumExpr project is looking for a new maintainer for a package that is used in pandas, PyTables and many other packages. If have benefited of NumExpr capabilities in the past, and willing to contribute back to the community, we would be happy to hear about you!

We are looking for someone that is knowledgeable about compiling extensions, and that is ready to spend some cycles in making releases (2 or 3 a year, maybe even less!). Interested? just open a new ticket here and we will help you onboarding!

Thank you!

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi.org/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.8.7.tar.gz (103.4 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

numexpr-2.8.7-cp312-cp312-win_amd64.whl (95.6 kB view details)

Uploaded CPython 3.12Windows x86-64

numexpr-2.8.7-cp312-cp312-win32.whl (103.0 kB view details)

Uploaded CPython 3.12Windows x86

numexpr-2.8.7-cp312-cp312-musllinux_1_1_x86_64.whl (941.3 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

numexpr-2.8.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (389.1 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

numexpr-2.8.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (420.0 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

numexpr-2.8.7-cp312-cp312-macosx_11_0_arm64.whl (92.0 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

numexpr-2.8.7-cp312-cp312-macosx_10_9_x86_64.whl (102.8 kB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

numexpr-2.8.7-cp311-cp311-win_amd64.whl (95.3 kB view details)

Uploaded CPython 3.11Windows x86-64

numexpr-2.8.7-cp311-cp311-win32.whl (102.8 kB view details)

Uploaded CPython 3.11Windows x86

numexpr-2.8.7-cp311-cp311-musllinux_1_1_x86_64.whl (938.4 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

numexpr-2.8.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (386.4 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

numexpr-2.8.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (418.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

numexpr-2.8.7-cp311-cp311-macosx_11_0_arm64.whl (91.8 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

numexpr-2.8.7-cp311-cp311-macosx_10_9_x86_64.whl (102.7 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

numexpr-2.8.7-cp310-cp310-win_amd64.whl (95.3 kB view details)

Uploaded CPython 3.10Windows x86-64

numexpr-2.8.7-cp310-cp310-win32.whl (102.8 kB view details)

Uploaded CPython 3.10Windows x86

numexpr-2.8.7-cp310-cp310-musllinux_1_1_x86_64.whl (934.9 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

numexpr-2.8.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (384.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

numexpr-2.8.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (415.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

numexpr-2.8.7-cp310-cp310-macosx_11_0_arm64.whl (91.8 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

numexpr-2.8.7-cp310-cp310-macosx_10_9_x86_64.whl (102.7 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

numexpr-2.8.7-cp39-cp39-win_amd64.whl (95.3 kB view details)

Uploaded CPython 3.9Windows x86-64

numexpr-2.8.7-cp39-cp39-win32.whl (102.8 kB view details)

Uploaded CPython 3.9Windows x86

numexpr-2.8.7-cp39-cp39-musllinux_1_1_x86_64.whl (933.9 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

numexpr-2.8.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (383.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

numexpr-2.8.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (414.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

numexpr-2.8.7-cp39-cp39-macosx_11_0_arm64.whl (91.8 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

numexpr-2.8.7-cp39-cp39-macosx_10_9_x86_64.whl (102.7 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file numexpr-2.8.7.tar.gz.

File metadata

  • Download URL: numexpr-2.8.7.tar.gz
  • Upload date:
  • Size: 103.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for numexpr-2.8.7.tar.gz
Algorithm Hash digest
SHA256 596eeb3bbfebc912f4b6eaaf842b61ba722cebdb8bc42dfefa657d3a74953849
MD5 ba042bd8e8fa3d5ca400e734f32c1b31
BLAKE2b-256 931db9e273d1509790e2add861895c872e797058fa408860f81716b11a09287f

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.7-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 95.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for numexpr-2.8.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f29f4d08d9b0ed6fa5d32082971294b2f9131b8577c2b7c36432ed670924313f
MD5 b0a59d1502fca8aaf83b8893c40a0136
BLAKE2b-256 ac91df1b10d54f656daae151ad1901f44f1f04f19c7f48edb3e758244e576ea8

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp312-cp312-win32.whl.

File metadata

  • Download URL: numexpr-2.8.7-cp312-cp312-win32.whl
  • Upload date:
  • Size: 103.0 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for numexpr-2.8.7-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b8a5b2c21c26b62875bf819d375d798b96a32644e3c28bd4ce7789ed1fb489da
MD5 af8d098a0b295f7fabb0a04303e6a820
BLAKE2b-256 6f70c15ad3f7910b209616a22f4e94bbd5392b219c38db2aaab8bd75bf3b83c9

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 47a249cecd1382d482a5bf1fac0d11392fb2ed0f7d415ebc4cd901959deb1ec9
MD5 d1d66e55f13a2743fff345ac0f1c34b3
BLAKE2b-256 70ded3bc83ba2b31bfd75daaf706351d7535b9bebd03e0f950e492dbc62335bc

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a371cfc1670a18eea2d5c70abaa95a0e8824b70d28da884bad11931266e3a0ca
MD5 ee4a9673d8d35ab3864dd61fb8820960
BLAKE2b-256 2368ce235754faaf3ca4d153593d5c02fc39b48f7b1b0c59226a6f65be2bbb90

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d46c47e361fa60966a3339cb4f463ae6151ce7d78ed38075f06e8585d2c8929f
MD5 2d43c88ef1fdeccd56791a8be14386f1
BLAKE2b-256 e7969e14c82ecb22e320c79094d9fa3381fc0923b0c196a6b374c4b8bdc521a8

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3bdf8cbc00c77a46230c765d242f92d35905c239b20c256c48dbac91e49f253
MD5 c8fc4099be9476653badf36b039d3da5
BLAKE2b-256 7ad27e70b43cc933507f9a51a4e6403f76a17acaf29218c91c7ee2cbb11a3a8a

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5340d2c86d83f52e1a3e7fd97c37d358ae99af9de316bdeeab2565b9b1e622ca
MD5 0c4b583c0556d4886c8902d5e97e87e0
BLAKE2b-256 b83ebcfb99bc0eed145e7ba801d1836c6614b1b1fd3cf42344a9b62fc30fb319

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 95.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for numexpr-2.8.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fd93b88d5332069916fa00829ea1b972b7e73abcb1081eee5c905a514b8b59e3
MD5 279c044a6109dfad783e49d895da803b
BLAKE2b-256 934408ddbebeb3587876a03c758f0068587c42dc6785031190478e0d25667848

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.8.7-cp311-cp311-win32.whl
  • Upload date:
  • Size: 102.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for numexpr-2.8.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 da55ba845b847cc33c4bf81cee4b1bddfb0831118cabff8db62888ab8697ec34
MD5 8a8f432603ac76508c7512f9fed816ab
BLAKE2b-256 ad9e9b80ba6f3a4bb26a1d9ec8f9714c64733865b963e722c319502bd41c3e6a

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 81451962d4145a46dba189df65df101d4d1caddb6efe6ebfe05982cd9f62b2cf
MD5 fc1d973fc3a4a94172185598ca1b9ace
BLAKE2b-256 c42d1401e7d8653ed61f4b1fdfdde5b0cfecee95db6fd6ad8868eed4d7c1d31e

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11121b14ee3179bade92e823f25f1b94e18716d33845db5081973331188c3338
MD5 c8085cfed3392e4c02e2e7375f39ccd2
BLAKE2b-256 6a3efa33d67bc4f5ee05f5bc2ce65fd1a796211f0b759cec3f60ded2763013b9

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dccf572763517db6562fb7b17db46aacbbf62a9ca0a66672872f4f71aee7b186
MD5 d3d378d769b805b878ca745d9cfc8169
BLAKE2b-256 6581905bb27facafcf5fce4a2614a79ce61a22beb4bf0e8ad1049265e2a357ec

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f021ac93cb3dd5d8ba2882627b615b1f58cb089dcc85764c6fbe7a549ed21b0c
MD5 a1a9de680dcd271439deb092aa85cc64
BLAKE2b-256 0a891b180ac1a8e0ee81f497ff491cfe917173b0fe42b3ad77e4afdbf3d5aecc

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 32934d51b5bc8a6636436326da79ed380e2f151989968789cf65b1210572cb46
MD5 2b3c42f33f4454ed2e4e7fcd2de287a9
BLAKE2b-256 534110fe06719ea162b29cc1e8d2c65bfb9be9834b801e574efb769f1a24c77e

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 95.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for numexpr-2.8.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cf5f112bce5c5966c47cc33700bc14ce745c8351d437ed57a9574fff581f341a
MD5 967361e88853126b1492f2578b1e2775
BLAKE2b-256 ce1dd0c69195a1e8e913e64096ebcff8c660f1b34414201e8f795add078bcd26

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.8.7-cp310-cp310-win32.whl
  • Upload date:
  • Size: 102.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for numexpr-2.8.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d43f1f0253a6f2db2f76214e6f7ae9611b422cba3f7d4c86415d7a78bbbd606f
MD5 802c094094b69ae47e68a5413a46484d
BLAKE2b-256 a81c96d0c9b0092198b8ec8577e2144b6408224d9825fc30c2628c4228b47b78

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5496fc9e3ae214637cbca1ab556b0e602bd3afe9ff4c943a29c482430972cda8
MD5 aa791bc556249434b6bd5f5e02fbff4b
BLAKE2b-256 3d3b66c5f772fd9f376f3fd85125abe46467f9ec5c18dc15a62bbec7aff4ea28

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb2f473fdfd09d17db3038e34818d05b6bc561a36785aa927d6c0e06bccc9911
MD5 dad198d30f10deba0abd8d9f850bdbe3
BLAKE2b-256 2d03de1341ec86bbdf1e4a7ad34d95af4762be8a3efab01d5f96922f1228da3e

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a4546416004ff2e7eb9cf52c2d7ab82732b1b505593193ee9f93fa770edc5230
MD5 b37be65cdb1a380bd5dd03b0c93ea1ee
BLAKE2b-256 15323d6dbaa4d1a640aca8dba8655ef5b757259a8a128629c0926647d90d7a64

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db1065ba663a854115cf1f493afd7206e2efcef6643129e8061e97a51ad66ebb
MD5 4d1cf97c3578794e69cbc0a6a74d3911
BLAKE2b-256 e4b8a700ea37b12f1eb1c2edc78c775a125dc34eac48f091678abfdbe5b32cce

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d88531ffea3ea9287e8a1665c6a2d0206d3f4660d5244423e2a134a7f0ce5fba
MD5 7c1790dc5a2445d59bd643c4709b091b
BLAKE2b-256 463553e605d4bb79d82ae083b472335b6b08057b15410186c9ec96205ba3d742

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 95.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for numexpr-2.8.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c7bf60fc1a9c90a9cb21c4c235723e579bff70c8d5362228cb2cf34426104ba2
MD5 0e5968db32a07240fc98ca00968ef5e5
BLAKE2b-256 59cab2e97c61df22c51bddda6dce76a9d9be799820ae082fc5321288967b448a

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr-2.8.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 102.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for numexpr-2.8.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 56ec95f8d1db0819e64987dcf1789acd500fa4ea396eeabe4af6efdcb8902d07
MD5 7bf9894b63b227eda87aa98a9c89b4c2
BLAKE2b-256 b4eed1eba821d2729bb4b1817229586ac4f51c00a94d26346ec330b2550f2bba

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8bf005acd7f1985c71b1b247aaac8950d6ea05a0fe0bbbbf3f96cd398b136daa
MD5 35b3ef4a45f5292609abf2e074985fe8
BLAKE2b-256 5cd35bc9ba1fabec4a70e4a380b5ed314c57f6c8b353dc32006e3596d523f1e0

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0983052f308ea75dd232eb7f4729eed839db8fe8d82289940342b32cc55b15d0
MD5 381e8e58791dd1ac32890e9afd70b1b3
BLAKE2b-256 22fccdb9f54929359be2754dd50ca0f21f140b608c84a364ae6915c0991140df

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e838289e3b7bbe100b99e35496e6cc4cc0541c2207078941ee5a1d46e6b925ae
MD5 f7139ab52b81072a62a2d89e66474ff1
BLAKE2b-256 2851361bdba89849d966f508acac9a475beb782080e948604b57d1d679f7d826

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3a84284e0a407ca52980fd20962e89aff671c84cd6e73458f2e29ea2aa206356
MD5 267994336a3042183f2704b6f7d498a1
BLAKE2b-256 2417a94a2173a7b8b9a1a9dacf0e725eddb4fdcc50f76fe57ee254bf7f17e27c

See more details on using hashes here.

File details

Details for the file numexpr-2.8.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ecaa5be24cf8fa0f00108e9dfa1021b7510e9dd9d159b8d8bc7c7ddbb995b31
MD5 fab9ae882db0fd34b07763026b3921ca
BLAKE2b-256 b044fa06bcaf0b90816efc32f344889f2884b1aec9dd994097034a513489f345

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page