Skip to main content

Transforming vector fields

Project description

Numflow

Python/C++ based tool for converting vector field data into models for rendering.

I made a blogpost describing the design, there are also some outputs, see more here!

Dev

Developing the package on localhost is recommanded in devcontainer - see .devcontainer folder. The deps are in pyproject.toml, you can build the package:

pip install .

The install uses pyproject.toml to install the deps, and the setup.py to install the package. For local dev, you can install the dependencies with:

pip install -r requirements.txt

Run the tests:

pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numflow-1.0.0.tar.gz (17.7 kB view details)

Uploaded Source

Built Distributions

numflow-1.0.0-cp311-cp311-win_amd64.whl (102.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

numflow-1.0.0-cp311-cp311-musllinux_1_1_x86_64.whl (638.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numflow-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numflow-1.0.0-cp311-cp311-macosx_10_9_universal2.whl (179.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

numflow-1.0.0-cp310-cp310-win_amd64.whl (102.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

numflow-1.0.0-cp310-cp310-musllinux_1_1_x86_64.whl (638.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numflow-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numflow-1.0.0-cp310-cp310-macosx_10_9_universal2.whl (179.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

numflow-1.0.0-cp39-cp39-win_amd64.whl (102.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

numflow-1.0.0-cp39-cp39-musllinux_1_1_x86_64.whl (639.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numflow-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (115.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numflow-1.0.0-cp39-cp39-macosx_10_9_universal2.whl (179.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file numflow-1.0.0.tar.gz.

File metadata

  • Download URL: numflow-1.0.0.tar.gz
  • Upload date:
  • Size: 17.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for numflow-1.0.0.tar.gz
Algorithm Hash digest
SHA256 22fdcba64960f90def244b9424154c42fcbd9a2e5bd8edaa0538f85ea36a63e0
MD5 809697ea1194f1b879c01fd6378cbb5d
BLAKE2b-256 d49a215597aa493f8e9e1511ee19cefc36ec4956aed46287be985bce69d2dc80

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numflow-1.0.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 102.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for numflow-1.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 abff3e5b0bf2c0776043cc2b2bc65de5e00e7355020811d8a711812ab7a2ec28
MD5 3f5e0c21359405915639dd80268a6483
BLAKE2b-256 75e5709c665712606d144b5654bfdbbb7149aa801286c91599b34a9e76d25d81

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numflow-1.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7464881886f66468156247e5a6a5790c0730194b07b7412b3617b418c0705e8b
MD5 0cb4da61e160a89797bb38b91e4fcf60
BLAKE2b-256 d06a6816e69fd691f1171060100934ddd2cf7247879fdbd1ab4e14a9cbfe401d

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numflow-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af3c4a52b3c0c6d5200385e16d88ffaf7847ad037560302cfe578e3fea894203
MD5 79c2955e1b781ab987b89a245bb247a5
BLAKE2b-256 66d0be3640b76a9e332c021d8b9f86bfca1df22676ff86445d116d48ee5dc712

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for numflow-1.0.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 070b8c555161fc1376495a1ed14a6b462c22076a72de5a727a1ee8f982570823
MD5 b644269d5d609836635ef6e9622e440c
BLAKE2b-256 ed24bb10f4609a95a193e0237093b71922deff630cb49af3e16f702f2cd6d7df

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numflow-1.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 102.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for numflow-1.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bc704c3cf0d24caa75504211aa2275c236492ef3de1f8e1a5b31a83340a2b5f4
MD5 0b9dccdb57d600ced458cb4524b3d137
BLAKE2b-256 e76972b3ba358bc3f87bbcf9f91677903717293fb0d87510767281f28b1e52b7

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numflow-1.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c887bca40574408a587512bd61cf8580f558363723f97b1a5af7ef0d9c4cf474
MD5 6f562854e9e7ba05d2b5c3375f1fece7
BLAKE2b-256 5487707607f4f85b1bb71ca74552bf7efc60ab633dbbe9e153f4351ac1e87f0b

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numflow-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18792de387d80ac1c0152d48d7d44f7968aeed38afe5b712e8b7fa0be38ea996
MD5 804d2eb9a2eb05b4300a804dcb316495
BLAKE2b-256 f8cebb216e1c9df8b7dab9b0054d391c610e264fb4f4b4fe1c738b7af88f3d21

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for numflow-1.0.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 47293afc6e71817b6c3d5b2acbaacc5e38267b3850318567d2bf4c9c7dd2758f
MD5 7c34ce07cecde13ad08dae3ecb83b615
BLAKE2b-256 c7c739d52a165d60d80be3a658bac3c7bbfc0a48b0cb85231050a5def1f92cbc

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numflow-1.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 102.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for numflow-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2041e27d2f7a9cff285cbc035d15789461740c6816a484524de4ac3ef777bcde
MD5 1f446fb87c6533454e0f72800c7608bd
BLAKE2b-256 dc9ab9fc1a771d654cfd1d95aff81af48864bfbb0e3f8a640adac14fa04f3b15

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numflow-1.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8eb24cf18727983fb9a7f5beada3b2cf5799eac1337204bac40e632d43bf0ed1
MD5 f05097586a98a3fe83c02304361c844f
BLAKE2b-256 8df8d015092b3287aca115b72ff10d12e7e91298e4ec6d9f81a3c311c9ea58ca

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numflow-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9228958f8f3ed85b93b907f2235b855b61bfa268c99b0e26299b03d5b919dc10
MD5 772ec8591d8c6cb9ccbadc4d8dae8bc6
BLAKE2b-256 d32cd14cd3d65481b81687d19d3e739910c6bdae216e342101b43bd187ab3bdd

See more details on using hashes here.

File details

Details for the file numflow-1.0.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for numflow-1.0.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2a5965dcd5fa855c4a0c37d53f65bc69306623b1ec55249a58263f4633f0e9eb
MD5 aa9b11006120d594aba1452aed79abc5
BLAKE2b-256 dd9a3f0061f6009d80e823a700f4c2bd3eaa2bdd3a5143a322070d38b4d18788

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page