Linear Regression with numpy only.
Project description
numpy-linreg
Linear Regression with numpy only.
Installation
The numpy-linreg git repo is available as PyPi package
pip install numpy-linreg
pip install git+ssh://git@github.com/ulf1/numpy-linreg.git
Usage
Ridge Regression
import numpy_linreg.ridge as ridge
import numpy_linreg.metrics as metrics
beta = ridge.lu(y, X)
rmse = metrics.rmse(y, X, beta)
OLS Regression
import numpy_linreg.ols as ols
beta = ols.lu(y, X)
beta = ols.pinv(y, X)
beta = ols.qr(y, X)
beta = ols.svd(y, X)
Check the examples folder for notebooks.
Appendix
Commands
Install a virtual environment
python3.6 -m venv .venv
source .venv/bin/activate
pip3 install --upgrade pip
pip3 install -r requirements.txt
pip3 install -r requirements-dev.txt
pip3 install -r requirements-demo.txt
(If your git repo is stored in a folder with whitespaces, then don’t use the subfolder .venv. Use an absolute path without whitespaces.)
Python commands
Jupyter for the examples: jupyter lab
Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
Publish
pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist
twine upload -r pypi dist/*
Clean up
find . -type f -name "*.pyc" | xargs rm find . -type d -name "__pycache__" | xargs rm -r rm -r .pytest_cache rm -r .venv
Support
Please open an issue for support.
Contributing
Please contribute using Github Flow. Create a branch, add commits, and open a pull request.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file numpy-linreg-0.1.2.tar.gz
.
File metadata
- Download URL: numpy-linreg-0.1.2.tar.gz
- Upload date:
- Size: 8.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 415325b76af20e47baa4383ff666db0be06f0b1ec754261262644091856ba155 |
|
MD5 | 9f9d3da73f9706cf1acecb7e68879a27 |
|
BLAKE2b-256 | c7b0b1311bd69a5a794e5044feff7a0cb768f29a19dc791e366c15dc3718b918 |